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Preface

The 6th International Symposium on Electric and Magnetic Fields (EMF) 2003, was
held in Aachen, Germany, from 6 to 9 October 2003. Previous editions were held in
Liège (September 1992), Leuven (May 1994), Liège (May 1996), Marseille (May 1998)
and Ghent (May 2000).

The purpose of the EMF Symposium is to throw a bridge between the recent advances
of research in numerical modelling of electromagnetic fields and the growing number of
industrial problems requiring such techniques. Therefore, besides classical sessions
on the progress of computational methods, special sessions were devoted to advanced
industrial applications of electromagnetic modelling. The topics included numerical
methods and techniques, coupled problems (mechanical, thermal, electric circuits),
material modelling, optimisation and specific application oriented numerical problems.

More than 100 papers were presented by participants coming from 18 countries.
A limited number of 25 papers were selected by the EMF’2003 Scientific Committee for
publication in this special issue of the COMPEL Journal.

Special thanks are due to all the members of the Scientific Committee for their
valuable reviewing work as well as to the AIM (Association of Engineers from the
Montefiore Electrical Institute, University of Liège) secretariat for numerous
organisational aspects.

We hope that this special issue will provide various interesting information to the
readers.

Patrick Dular, Kay Hameyer and Gerhard Henneberger
Guest Editors

EMF’003 International Scientific Committee
J.P.A. BASTOS, Universidade Federal de Santa Catarina, Brazil
W.A. CRONJE, Rand Afrikaans University, South Africa
A. DEMENKO, Technical University of Poznan, Poland
P. DULAR, Université de Liège, Belgium
R.D. FINDLAY, McMaster University, Canada
J. GYSELINCK, Université de Liège, Belgium
K. HAMEYER, Katholieke Universiteit Leuven, Belgium
G. HENNEBERGER, RWTH Aachen, Germany
L. KETTUNEN, Tampere University of Technology, Finland
A. KOST, Universität Cottbus, Germany
J. MELKEBEEK, Universiteit Gent, Belgium
G. MEUNIER, Laboratoire d’Electrotechnique de Grenoble, France
G. MOLINARI, Universita Degli Studi di Genova, Italy
S.I. NABETA, Universidade de Sao Paulo, Brazil
A. NICOLAS, Centre de Génie Electrique de Lyon, France
A. NICOLET, Université d’Aix-Marseille III, France
F. PIRIOU, Université des Sciences et Technologies de Lille, France
A. RAZEK, Laboratoire de Génie Electrique de Paris, France
J.K. SYKULSKI, University of Southampton, United Kingdom
N. TAKAHASHI, Okayama University, Japan
M. TRLEP, University of Maribor, Slovenia
T. WEILAND, Universität Darmstadt, Germany
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Fast and efficient 3D boundary
element method for closed

domains
André Buchau, Wolfgang Hafla and Wolfgang M. Rucker
Institute for Theory of Electrical Engineering, University of Stuttgart,

Stuttgart, Germany

Keywords Boundary-elements methods, Electrostatics, Galerkin method

Abstract An application of a boundary element method to the solution of static field problems in
closed domains is presented in this paper. The fully populated system matrix of the boundary
element method is compressed with the fast multipole method. Two approaches of modified
transformation techniques are compared and discussed in the context of boundary element
methods to further reduce the computational costs of the fast multipole method. The efficiency of
the fast multipole method with modified transformations is shown in two numerical examples.

Introduction
The solution of static field problems with a boundary element method (BEM) is
very advantageous (Rao et al., 1984). It suffices to discretize the surfaces of piecewise
homogeneous, linear materials only. The surrounding free space is implicitly considered.
BEMs can be divided into direct and indirect formulations. An indirect formulation is
based on surface charges in the case of potential problems. The corresponding potential
is a so-called single-layer potential. A direct formulation based on Green’s theorem

cðrÞuðrÞ ¼

I
›uðr 0Þ

›n0

1

jr 2 r 0j
dA0 2

I
uðr 0Þ

›

›n0

1

jr 2 r 0j
dA0 ð1Þ

is recommended for the solution of potential problems in closed domains.
Only the surface of a closed domain has been considered in equation (1), since the

influence of the surrounding space is represented by equivalent Dirichlet and Neumann
boundary conditions. The first integral in equation (1) corresponds to a single-layer
potential and the second to a double-layer potential. The singular coefficient c(r)
depends on the position of the evaluation point in the domain.

The fully populated system matrix is compressed with the fast multipole method
(FMM) (Greengard and Rokhlin, 1987). The FMM reduces the memory requirements
from O(N 2) to approximately O(N ). N is the number of unknowns. Additionally, the
FMM accelerates post processing drastically. Nevertheless the FMM has a significant
bottleneck, especially in combination with double-layer potentials. The computation of
a single matrix-by-vector product is relatively expensive. Of course, it is proportional
to CN, but the constant C is large (Buchau et al., 2003b).

The computational costs of a matrix-by-vector product are mainly caused by the
transformation of a multipole expansion into a local expansion (M2L-transformation).
The costs of the M2L-transformation are of O(L 4) (Greengard and Rokhlin, 1987).
L is the order of the truncated series expansions. In the context of particle interactions
a modified M2L-transformation reduces the computational cost to O(L 3) or O(L 2),
respectively (Cheng et al., 1998; Greengard and Rokhlin, 1997).
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A direct BEM formulation for the solution of potential problems is described in the
following. An extension of the FMM is presented to treat the double-layer potential
term in Green’s theorem (equation (1)). Finally, the approaches presented in Cheng et al.
(1998) and Greengard and Rokhlin (1997) are adapted to BEM computations with
higher order elements and adaptive meshes. The efficiency of both approaches is
analyzed in the framework of potential problems and a BEM.

Theoretical background
Direct BEM formulation
As aforementioned a direct BEM formulation based on Green’s theorem (equation (1))
is especially suited to the solution of potential problems in closed domains. Several
domains are coupled at their common boundaries. The Dirichlet boundary condition is
the given potential at some parts of the surfaces of the domains. In the case of
electrostatic problems the Neumann boundary condition is the continuity of the normal
component of the electric displacement between two dielectric domains. The normal
derivative of the potential vanishes at the remaining parts of the domain surfaces for
steady current flow field problems.

All surfaces are discretized with eight-noded, quadrilateral, second-order elements.
The system of linear equations is obtained by an application of the Galerkin method.
It is solved iteratively with a generalized minimal residual method (GMRES) in
combination with a Jacobi preconditioner (Axelsson, 1996; Barrett et al., 1994).

Fast multipole method
The FMM was introduced for the fast and efficient simulation of particle interactions
(Greengard and Rokhlin, 1987). An application of the FMM to an indirect BEM
formulation with Dirichlet boundary conditions and constant elements was presented
for example, in Nabors and White (1991). To deal with higher order elements and
adaptive meshes the FMM algorithm must be extended. Then the real convergence
radii of the cubes have to be considered to achieve numerical stability and a high
accuracy (Buchau et al., 2003a). All the above-mentioned approaches and applications
have in common, the system matrix that is approximated accurately along with low
memory requirements. The computational costs are in most cases satisfactory.

If the potential of charge distributions or single-layers are computed, the classical
FMM approach (Greengard and Rokhlin, 1987) can be used. Here, potential problems
shall be solved with a direct BEM formulation based on Green’s theorem (equation (1)).
That means the potential of a single- and a double-layer has to be evaluated.

FMM for double-layer potentials
There are two possibilities to include double-layer potentials

uðrÞ ¼
1

4p10

Z
A

tðr 0Þ7r 0

1

jr 2 r 0j
· n0 dA0 ð2Þ

into the FMM. Either the local expansion or the multipole expansion can be modified.
The electric field strength can be computed by an analytical differentiation of the

local expansion (Buchau et al., 2000). Similarly a local expansion can be found to
compute a double-layer potential (Buchau and Rucker, 2002)
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uðrÞ ¼ 2
1

4p10

XL

n¼1

Xn

m¼2n

7 r nYm
n ðu;wÞ

� �
· Lm

n : ð3Þ

Ym
n are spherical harmonics. To obtain the vector local coefficients Lm

n the double-layer
t is split into three Cartesian components. Each component of the vector local
coefficients can be formally treated like a single-layer.

In the framework of the FMM the local coefficients are computed with a hierarchical
scheme from the so-called multipole coefficients. Now a set of multipole coefficients is
needed, which is obtained from the Cartesian components of the double-layer. Each set
of multipole coefficients is converted with the classical FMM algorithm into a local
expansion and then evaluated with equation (3). That means the FMM-algorithm has
to be passed four times in each iteration step, thrice for the double-layer and once for
the single-layer. The computational costs grow correspondingly.

Another approach is to modify the computation of the multipole coefficients (Of, 2001)

Mm
n ¼

Z
A

tðr 0Þnðr 0Þ ·7r0 r0nY2m
n ðu 0;w0Þ

� �
dA0: ð4Þ

In that case the multipole coefficients of single- and double-layers can be added.
All remaining computations, transformations and local expansions are the same as in
the original FMM algorithm. Only one set of multipole coefficient is obtained along with
only one pass of the FMM algorithm in each iteration step. That means the total
computational costs are approximately the same as in the classical FMM.

Modified multipole-to-local transformations
For a conversion of a multipole expansion Mm

n into a local expansion Lm
n a double sum

has to be evaluated (Greengard and Rokhlin, 1987)

Lm
n ¼

XL

k¼0

Xk

l¼2k

Ml
k j jm2lj2jmj2jljAl

kA
m
n Y l2m

kþn ðm; nÞ

ð21Þkr kþnþ1Al2m
nþk

: ð5Þ

The computational costs for equation (5) are of O(L 4). If equation (5) is only applied to
transformations in z-direction, it simplifies to

Lm
n ¼

XL

k¼m

Mm
k

Y 0
kþnð0; 0Þð21Þkþmðn þ kÞ!

r kþnþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk 2 mÞ!ðk þ mÞ!ðn 2 mÞ!ðn þ mÞ!

p : ð6Þ

The double-sum reduces to a single-sum and the imaginary part of the transformation
coefficients vanishes. Equation (6) is of O(L 3). The coordinate system must be rotated
in such a way that the transformation direction coincides with the z-axis, to use
equation (6) in the FMM. The multipole coefficients are rotated about the z-axis by
an angle b with the following transformation

M 0m
n ¼ Mm

n e jmb: ð7Þ

The rotation of the local coefficients is analogous to equation (7). The rotation of
the multipole coefficients about the y-axis about an angle a is more expensive
(Biedenharn and Louck, 1981)

M 0m
0

n ¼
X21

m¼2n

Rðn;m;m0;aÞð21Þm M2m
n

� �
* þ

Xn

m¼0

Rðn;m;m0;aÞMm
n : ð8Þ
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The rotation matrices R(n, m, m0, a) are discussed in detail in Biedenharn and Lauck
(1981). Note that in Biedenharn and Lauck (1981) another normalization of the spherical
harmonics was used. The other transformations, the multipole-to-multipole
transformation and the local-to-local transformation, can be modified similarly

Mm
n ¼

Xn

k¼0

�M
m

n2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn 2 mÞ!ðn þ mÞ!

k!k!ðn 2 k 2 mÞ!ðn 2 k þ mÞ!

s
r kPkð1Þ ð9Þ

and

Lm
n ¼

XL

k¼n

�L
m

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk 2 mÞ!ðk þ mÞ!

ðk 2 nÞ!ðk 2 nÞ!ðn 2 mÞ!ðn þ mÞ!

s
ð21Þkþnr k2nPk2nð1Þ: ð10Þ

The size of the near-field and the order of the series expansions are determined
heuristically (Buchau et al., 2003a). For instance, L ¼ 9 is a good choice, if the near-field
is relatively small. Then the modified transformations in equations (6), (9), and (10)
reduce the computational costs by approximately 60 percent.

Another approach is the use of “plane wave” expansions (Cheng et al., 1998;
Greengard and Rokhlin, 1997). All transformation directions are grouped in six main
directions (up, down, north, south, east, and west). The main directions coincide with
the axes of a Cartesian coordinate system. The multipole expansion is converted into
an outgoing plane wave (Greengard and Rokhlin, 1997)

W ðk; lÞ ¼
wk

dMk

XL

m¼2L

jjmje jmal;k

XL

n¼jmj

Mm
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn 2 mÞ!ðn þ mÞ!
p lk

d

	 
n

: ð11Þ

After a rotation of the coordinate system. The outgoing plane wave is transformed into
an incoming plane wave of another cube

V ðk; lÞ ¼ W ðk; lÞe2lkz0 e jlkðx0cosðal;kÞþy0sinðal;kÞÞ ð12Þ

and then converted back into a local expansion

Lm
n ¼

jjmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn 2 mÞ!ðn þ mÞ!

p Xsð1Þ
k¼1

2
lk

d

	 
nXMk

l¼1

V ðk; lÞe2jmal;k : ð13Þ

Finally, the rotation of the coordinate system is reversed and the local expansion is
evaluated. In total the computational costs are of O(L 2).

The above described approach was applied very successfully to simulations of
particle interactions. If this approach should be integrated into a FMM for a BEM,
some modifications are necessary. In practice, elements can stick out of the cubes
(Buchau et al., 2003a). Then the near- and the far-field is defined based on the real
convergence radii of the cubes. In Cheng et al. (1998) and Greengard and Rokhlin (1997)
the cubes are assigned to the main directions based on their position in space, since all
particles are lying always completely inside the cubes. In BEM computations it must
be additionally checked, if two cubes are really separated in one coordinate direction.
This direction is then the main direction. In some cases the convergence radii of two
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cubes are non-overlapping, but the cubes are not separated in at least one coordinate
direction. Such configurations occur especially on the diagonals of the coordinate
system. Then a plane wave expansion cannot be computed. Fortunately only a few
transformations are concerned from this and are treated for example, with equation (6).

We tried this promising approach in the context of electrostatic problems.
Unfortunately the computational costs are very large for L ¼ 9: In our opinion the
approach of equation (6) is more suitable for the solution of potential problems with
a BEM.

Numerical examples
Two numerical examples are investigated, namely an electrostatic problem and
a steady current flow field problem. In both cases a direct BEM formulation in
combination with the FMM is applied. The surfaces of the domains are discretized with
eight-noded, quadrilateral, second-order elements. The Galerkin method is used to
obtain a system of linear equations. The system of linear equations is solved iteratively
with GMRES and a Jacobi preconditioner. All examples were computed on a PC with
an Intel Pentium III 1.0 GHz processor.

Electrostatic problem
The investigated electrostatic problem consists of two electrodes. One electrode is
coated with a homogeneous, isotropic, linear dielectric (Figure 1). The potential of the
electrodes is set between +1 and 21 V, respectively. At the outer surface of the
dielectric the normal component of the electric displacement must be continuous.

All surfaces are discretized with 4,068 elements. The system of linear equations
with 12,210 unknowns was solved in 179 iterations with a residuum smaller than 1027.
When the FMM with classical transformations (equation (5)) is used, the solution of
the whole problem took 5 h and 53 min. The memory requirements were 127 MB for

Figure 1.
Boundary element mesh of
two electrodes, the left one
is coated with a dielectric
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the sparse near-field matrix, 102 MB for the far-field, and in total 243 MB. The
application of multipole-to-local transformations only in the z-direction (equation (6))
reduces the total computational costs to 2 h and 47 min. This corresponds to a
reduction of 53 percent. The assembly of the near- and far-field matrices and of the
right hand side took approximately 36 min. The memory requirements were decreased
to 176 MB. Especially the near-field matrix requirements were lowered by 37 percent.

Steady current flow field problem
A steady current flow field problem is examined to show further applicabilities of
the proposed method. The electric currents inside a conductor are studied. Here
we consider a model of a conducting path on a printed circuit board (Figure 2).
The Dirichlet boundary condition is the given potential at the three ports of the
conductor (1, 0.2, and 21 V). An electric current flows only inside a conductor. So the
normal derivative of the potential must vanish at the remaining surfaces of
the conductor (Neumann boundary condition). The mathematical description for this
kind of problem is the same as for electrostatic problems. Hence the same numerical
method can be used. Only different boundary conditions have to be considered.

After a discretization with 3720 elements, a system of linear equations with 11,244
unknowns are obtained. The problem was solved after 160 iteration steps in 1 h and
8 min. The compression rate of the system matrix was 88.3 percent. That means the
memory requirements were reduced from 965 MB for a classical BEM to 113 MB.
The potential in 17220 evaluation points inside the conducting path was computed in
only 145 s and is shown in Figure 3.

Figure 2.
Model of a conducting
path on a printed circuit
board

Figure 3.
Potential distribution
inside the conducting path
of Figure 2, the difference
between two equipotential
lines is 0.1 V
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Conclusion
A direct BEM formulation in combination with the fast multipole method is very
attractive for a fast and efficient solution of static field problems even in closed
domains. Only the surfaces of the closed domains have to be modeled and discretized.
The fast multipole method reduces the memory requirements and the computational
costs. Modified transformation techniques for the series expansions were investigated
and adapted to BEM computations with adaptive meshes. With the help of an
electrostatic example the efficiency of the modified transformations were shown.
The second example, a steady current flow field in a conducting path on a printed
circuit board illustrates the possible fields of application of the presented method.

References

Axelsson, O. (1996), Iterative Solution Methods, Cambridge University Press, Cambridge.

Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R.,
Rominie, C. and Van der Horst, H. (1994), Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, SIAM, Philadelphia, PA.

Biedenharn, L.C. and Louck, J.D. (1981), Angular Momentum in Quantum Physics: Theory and
Application, Addison-Wesley, London.

Buchau, A. and Rucker, W.M. (2002), “Efficient computation of double-layer potentials using the
fast multipole method”, paper presented at the Conference Digest of IEEE CEFC, p. 316.

Buchau, A., Huber, C.J., Rieger, W. and Rucker, W.M. (2000), “Fast BEM computations with the
adaptive multilevel fast multipole method”, IEEE Transactions on Magnetics, Vol. 36 No. 4,
pp. 680-4.

Buchau, A., Hafla, W., Groh, F. and Rucker, W.M. (2003a), “Improved grouping scheme and
meshing strategies for the fast multipole method”, COMPEL, Vol. 22 No. 3, pp. 495-507.

Buchau, A., Rucker, W.M., Rain, O., Rischmüller, V., Kurz, S. and Rjasanow, S. (2003b),
“Comparison between different approaches for fast and efficient 3D BEM computations”,
IEEE Transactions on Magnetics, Vol. 39 No. 3, pp. 1107-10.

Cheng, H., Greengard, L. and Rokhlin, V. (1998), “A fast adaptive multipole algorithm in three
dimensions”, Research Report YALEU/DCS/RR-1158, Department of Computer Science,
Yale University.

Greengard, L. and Rokhlin, V. (1987), “The rapid evaluation of potential fields in three
dimensions”, in Anderson, C. and Greengard, C. (Eds), Lecture Notes in Mathematics 1360,
Springer, Berlin, pp. 121-41.

Greengard, L. and Rokhlin, V. (1997), “A new version of the fast multipole method for the Laplace
equation in three dimensions”, Acta Numerica, pp. 229-69.

Nabors, K. and White, J. (1991), “Fastcap: a multipole accelerated 3D capacitance extraction
program”, IEEE Transactions on Computer Aided Design, Vol. 10 No. 11, pp. 1447-59.

Of, G. (2001), “Die Multipolmethode für Randintegralgleichungen”, Diploma thesis at the
Mathematical Department A, University of Stuttgart.

Rao, S.M., Sarkar, T.K. and Harrington, R.F. (1984), “The electrostatic field of conducting bodies
in multiple dielectric media”, IEEE Transactions on Microwave Theory and Techniques,
Vol. 32 No. 11, pp. 1441-8.

Fast and efficient
3D boundary

element method

865



Formulation of mixed elements
for the 2D-BEM

Klaus Schimmanz and Arnulf Kost
Technical University of Cottbus, Cottbus, Germany

Keywords Boundary-elements methods, Differential equations, Numerical analysis

Abstract Accuracy and time consumption in numerical computations are often in contradiction
to each other. In modern industrial design processes flux field computation becomes more and
more important. Thus, it is desirable to minimize any methodical error for better performance.
This paper discusses a flaw of frequently used standard elements in boundary-element-method and
shows a way to avoid it.

1. Introduction
The boundary integral equation required by the boundary element method (BEM) can
be deduced in a simple way based on considerations of weighted residuals. In the case
of Laplacian differential equation ðDw ¼ 0Þ; for instance, it leads to the following
expression (Kost, 1994):

Ui ¼

I
G

vi

›u

›n
2 u

›vi

›n

� �
dG ð1Þ

where G is the domains contour, u the boundaries potential function on G, and ~n the
outward vector unit normal. v and ›v=›n are the so-called fundamental solutions of
the partial differential equation. The index i indicates an arbitrary location within the
domain or on the contour. To determine a potential Ui somewhere in the domain by
equation (1) it is necessary to know the whole potential function u along G and its
directional derivative ›u=›n ¼ ~n7u: Some of them are given in sections by the
necessary boundary conditions of the problem to be solved. But the missing ones need
to be computed first. As is well known, this can be accomplished by dividing the
boundary G into short segments, the elements, which leads to a finite set of equations
and thus, to a linear algebraic equation system. For each element interpolation
formulations of the potential functions and directional derivatives with some free
parameters are used and the unknown values of the equation system will be these
parameters.

2. Standard element flaw
Assume for simplicity that the body is two-dimensional and polygonal bounded.
The points where unknown values are considered are called nodes and taken to be in
the middle of the element for the so-called constant standard elements (Figure 1, left).

The values of u and ›u=›n ¼ ~n7u are assumed to be constant over each constant
standard element and equal to the mid-element node value. For standard elements the
same interpolation function type is employed for both value approximations, that
means in this case:

ui ¼ const and
›ui

›n
¼ const: ð2Þ
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But exactly this is the reason for a “built in flaw” of the BEM which causes distortions of
computed potential fields. Gradient calculations close to a standard element boundary,
for instance, in the case of constant elements lead to (Kost, 1994; Schimmanz, 2002):

ui ¼ const )
›ui

›t
~t ; 0

) 7u ¼
›ui

›n
~n þ

›ui

›t
~t ¼

›ui

›n
~n ¼ const

where ~t is the tangential vector unit normal of the element. Thus, there is an additional
error and this one is directionally dependent. The BEM minimizes the error onG and this
approximation discrepancy shows also an impact on elements which have a sufficient
order to solve the problem exactly. For example, for the two constant Dirichlet-borders in
the left and right hand side in Figure 2 just one element for each edge would be enough to
present the exact solution. But the value deviations along them depend strongly on the
number of homogeneous Neumann-elements used. Thus, it proves that for standard
elements an error locality on G is not present and cannot be expected. This effect here is
also the result of the disappearing tangential component that is indicated by very high,
but not realistic, flux densities across the corner Dirichlet-elements. It is obvious that the
BEM error minimizing tries to compensate this contradiction of the homogeneous
constant Neumann-elements with no tangential component by exciting an extreme flux
along these elements. The potential value can jump from one Neumann-element to the
next which suggests an existing tangential component in a more global sense, means in a
wider distance to the border line. Thus, a higher number of constant Neumann-elements
reduces the shown effect.

Similar effects like this are happening to all standard elements. To avoid such
problems a different formulation for value interpolations is obligatory.

3. Mixed element formulation
The reason for disappearing tangential components in the case of constant standard
elements is the higher polynomial approximation order of the normal component.

Figure 2.
Flux density distributions
across the same number of

Dirichlet-elements (left
and right hand side) of two

equally quadratic shapes
by constant standard

formulation, but with a
different number of

homogeneous
Neumann-elements

Figure 1.
Elements

Formulation of
mixed elements
for the 2D-BEM
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The order difference is exactly one. This will be the same for any other higher standard
element type, too. Therefore, suppressing this disturbance means in the simplest case
applying a constant-linear formulation in difference to equation (2) like:

uiðj Þ ¼ ð1 2 j Þ ui þ j uiþ1; and
›uiðj Þ

›n
¼ u0

i ¼ const ð3Þ

where j ¼ ½0; 1Þ is the local coordinate of the element i. The node has to be located at
one element bound for this mixed element type (for equation (3) see Figure 1, right).
Consequentially, each element still owns exactly one node, i.e. node ui, respectively, u0

i
is allocated to only element Ei and node uiþ1 belongs already to the following element
Eiþ1 and is not a part of Ei anymore.

Adequate to the deduction of the BEM equation system in Schimmanz (2002) one
can find the discrete expression for N elements:

XN

j¼1

uj ujþ1

h i ha
ij

hb
ij

2
64

3
75 ¼

XN

j¼1

u0
j gij; i ¼ 1; . . .;N ; uNþ1 ¼ u1

) H ~u ¼ G ~u0

ð4Þ

where

gij ¼

li
2p ð1 2 ln liÞ; i ¼ j

R
Gj
vi dG; otherwise

8><
>:

ha
ij ¼

bi

2p ; i ¼ j

R
Gj
ð1 2 j Þ ›vi

›n
dG; otherwise

8><
>:

hb
ij ¼

0; i ¼ jR
Gj
j ›vi

›n
dG; otherwise

8><
>:

ð5Þ

where li is the length of the element i and bi is the interior angle at node i. The angle bi

can be calculated implicitly by the assumption of a pure Dirichlet problem which has
no flux through the domain as shown in Brebbia and Domingues (1992). Rearranging
the above equation system by sorting unknowns to the left hand side and the knowns
to the other will lead as usually to an ordinary linear equation system like S~x ¼ ~b:

However, this linear equation system can be over-determined by some sorts of
boundary condition transitions which will need a special but simple treatment of the
equation set. This problem is shown in Figure 3, for instance. The example shows a
closed domain with six constant-linear elements with all possible boundary condition
transitions. Because of the Dirichlet-conditions the potential at u2 ¼ u3 ¼ 1 and
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u1 ¼ u5 ¼ u6 ¼ 0 are known. The potential at u4 is unknown. Further, the flux
densities for the elements E1, E3 and E4 are zero and thus, the homogeneous
Neumann-conditions give u0

1 ¼ u0
3 ¼ u0

4 ¼ 0; but u0
2, u0

5, u0
6 are unknown. Six elements

will cause six equations. But there are only four unknowns which creates an
over-determined equation system. The example shows that for the elements E1 and E3

all boundary node values are already known and hence, these equations contain no
new information about the system. Thus, those equations can be left out of the set. This
treatment is always applicable to any Dirichlet-to-Neumann-condition transition for
this kind of mixed elements.

4. Exemplary comparison
Figure 4 shows the numerical solution of the same homogeneous potential field
problem by using constant standard elements and constant-linear mixed elements. In
all cases just four elements are employed. Left and right hand sides are constant, but
different Dirichlet-conditions are applied and all other edges are homogeneous
Neumann ones. The flux density view graphs are shown for an easier identification of
field distortions, because the involved first potential derivation emphasizes such
disorientations.

Theoretically constant-linear mixed elements are able to solve a homogeneous field
problem exactly. The first two rows of Figure 4, however, seem to prove it wrong.

Figure 4.
Computed potential fields

and flux density maps;
left: constant standard

elements; and right:
constant-linear mixed

elements

Figure 3.
Example for all possible

boundary condition
transitions of

constant-linear mixed
elements
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The reason for the much heavier field distortions was found in the numerical Gaussian
quadrature algorithm (here with four collocation points). By using a mathematical
software for symbolic computations the analytical expressions of the integrals in
equation (5) and also for the similar integrals of constant standard elements have been
found (Schimmanz, 2002). The effect is presented in the last two rows of Figure 4.
Numerical experiments with 12 collocation points for the Gaussian quadrature had just
a small improvement effect. Benchmark tests revealed that the analytical integral
expressions can be calculated in about the same time as necessary for the Gaussian
quadrature with six collocation points. Except the first two rows in Figure 4 all results
presented in this paper are computed by analytical integral expressions, if not by other
mentioned.

The analytical part of Figure 4 shows the correctness of the constant-linear mixed
element formulation and shows again the reaction of the BEM to overcome the
standard element flaw by a higher flux density at corner locations as already discussed
in Section 2.

Results of the numerical integration in the boundary nodes are quite exact even if
numerical quadrature algorithms produce distortions within domains potential field.
Using Newton-Cotes quadrature with ten digits precision for constant-linear mixed
elements showed a difference in the analytical solution of the Laplacian equation for
the homogeneous case of less than 1029: This value is similar to that obtained by
analytical integration formulas by using ten digits precision.

Figure 5 shows an impression of the differences between the constant standard and
constant-linear mixed elements for a non-homogeneous potential problem. This again
is a flux density map where the constant Dirichlet-conditions are applied to the lower
left and right vertical edges. All other edges are homogeneous Neumann ones. In both
cases the same number of 242 elements are employed and among them 16 are for
Dirichlet edges.

Especially in the neighborhood of the small central re-entry cut the standard
element solution still shows field confusions. This is not noticeable by the
constant-linear mixed element computation, neither at the cut path way nor at any
other edge region and also not at the geometry caused singularities.

5. Consequences of asymmetric elements
For the construction of standard elements of the BEM usually a symmetric node
arrangement is used. But the element type introduced in Section 3 (Figure 1, right) is an
asymmetric one. That is, however, a typical phenomenon of this kind of mixed element

Figure 5.
Comparison of standard
elements (left) and
constant-linear mixed
elements (right) for the
same non-convex
structure (flux density
maps; the higher the
density, the brighter the
color)
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formulations. It may be supposed that the asymmetry will have undesirable
consequences in some applications.

Indeed, strange effects can be observed if a mixed element node is placed on a
singularity. Figure 6 shows an example.

Next to the constant Dirichlet-conditions occupying the upper 2/3 of the edge
lengths left and right hand side, this rectangular structure consists of homogeneous
Neumann-conditions only. Mixed elements are directed because of their asymmetry.
The shape shown in Figure 6 is described counterclockwise. Thus, at location A is a
1808 Dirichlet-to-Neumann condition transition and the sequence is reversed at location
B. Because of the disorientation of the flux vector at these points singularities will
occur, of course. The structure itself is symmetric and therefore both singularities will
have the same strength. The flux proportional flags at side A show an expectable
behavior. On the other side, the flux across B is somewhat confused, which further
confuses the field solution within the domain as well. Surprisingly, the integration
along the whole boundary G of the domain reveals a very precise satisfaction of the
Laplacian equation. It proves that this is a BEM solution – because the minimizing did
not go wrong – and thus, it is not an implementation fault. The element-wise
alternating flux density signs have been observed several times by pure
constant-linear mixed element installations of certain singularity conditions.

The explanation of the differences at side A and B can be found by considering the
element unknowns at the two singularities.

The potential along the whole boundary is continuous and therefore, the ui values
itself cannot convey any singularity, but the values of the first derivative u0

i can. The
node placed in singularity A is one of the homogeneous Neumann-elements where the
first derivative is a prescribed known finite condition. Furthermore, this element is one
of the Dirichlet-to-Neumann transitions which will be let out of the linear equation
system for the pure constant-linear mixed formulation as mentioned in Section 3. Thus,
this singularity is completely hidden from the BEM algorithm and plays no role in
solving the process. Hence, the solution behaves in the expected and, most important,
in the correct manner.

The boundary side B has also such a transition, but because of the mixed element
direction this one is at the upper right corner of the structure where no singularity
occurs. The Neumann-to-Dirichlet transition at singularity B places the Dirichlet-node
in it. That means the potential uB is the known value prescribed here and u0

B has to be

Figure 6.
Unreal flux contra

direction effect at B-sides
Dirichlet-elements of a

rectangular structure by
using pure constant-linear

elements (view graph of
flux density proportional

flags across constant
Dirichlet-boundaries –

upper 2/3 of the edge
lengths left and right

hand side)
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computed and the equation of this element will stay to be a part of the linear equation
system to be solved. The value of the singularity is infinite, theoretically. The numeric,
however, can assign a finite value to this node only. Since the BEM is an integral
equation method the node values express just the element average in some way by the
interpolation function in equation (3), which is for this element also theoretically
correct, a finite one. This may be the reason that in none of such cases the algorithm is
stopped by a runtime error and further, the flag at B-singularity in Figure 6 has not the
maximum possible value, respectively, length.

The BEM procedure will integrate along the whole contour related to this singular
node as fixed point. But the interpolation functions in equation (3) are unable to return
the infinity out of the node value u0

B. In fact, no polynomial interpolation formulation
has this ability. Thus, the minimizing algorithm concludes having a too low node
quantity and force it being higher. That is why the flag at B is longer than the
equivalent one at A. The following Dirichlet-element unknown u0

Bþ1; tries to
compensate the too high average of u0

B for satisfaction of the Laplacian equation in a
small scale. This causes the contra direction of the flux in u0

Bþ1, what again produces a
new – but unreal – singularity at the node of element B+1 and the process becomes
repeated for the next element, and so on. Finally, the alternating flux directions arise
along the entire Dirichlet-edge. This means, a higher number of Dirichlet-elements will
not avoid nor essentially relax this effect as can be shown.

Splitting the node into two locations, means letting ui at elements beginning
location and moving u0

i more inward of the element, is mathematically impossible
because vi and ~n7vi have to be taken from the same location i (equation (1)). But to
resolve the singularity problem the whole node can be shifted inside the element. This
can be done in a very similar way as for discontinuous linear standard elements
(Brebbia and Domingues, 1992).

Constant-linear mixed elements have just one node per element. Displacing all these
nodes to mid-element location in general would give back elements symmetry without
having any singularity problem as for constant standard elements. The gij expression
in equation (5) will become the same as for constant standard elements and the interior
angle bi will be always equivalent to p. Unfortunately, the necessary transformation
matrix T has some restrictions and disadvantages, as shown in the following.

5.1 Global constant-linear mixed element transformation
The nodes of pure constant-linear elements are located at the start bounding of the
elements. Thus, these elements are asymmetrical. The equation to be solved in this
case is (equations (4) and (5)):

1

2p
bþ H

� �
~u ¼ G~u0;

where b is the diagonal matrix of interior angles bi at nodes ui. To avoid singularity
problems it is desirable to shift the nodes onto mid-element location to gain back a
symmetrical element description (Figure 7). To do so, the integrals within the matrices
H and G have to be considered for the new locations, too. The result may be expressed
as Hd and Gd matrix. If the mid-element nodes are called vi, then the new equation to be
solved should be:
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1

2
I þ Hd

� �
~v ¼ Gd~v

0:

b becomes the identity matrix I, because all interior angles bi are equal to p now. But
this equation is not correct, because the potentials at the element bounds are still
needed for the integration (equation (4)). These potentials, however, are only constant
multipliers for the integrals, as before. This finally leads to the equation system:

1

2
I þ HdT

� �
~v ¼ Gd~v

0:

Therefore, T has to satisfy the expression: ~u ¼ T~v: The diagonal matrix of the interior
angles ð1=2ÞI is adequate to the left side of equation (1) and thus, it is unaffected by the
transformation (Brebbia and Domingues, 1992; Schimmanz, 2002).

The deduction of matrix T is easily approached in backward direction. The
potential at mid-element node vi is the arithmetical average of the potentials ui and uiþ1

because the linear formulation along the constant-linear mixed elements, i.e. ðuiþ1 þ
uiÞ=2 ¼ vi: For instance, the closed contour shown in Figure 7 (left) (called Te) leads to
the matrix equation:

T21
e · u ¼ 2v )

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

2
666666664

3
777777775

u1

u2

u3

u4

2
666666664

3
777777775
¼ 2

v1

v2

v3

v4

2
666666664

3
777777775

) det T21
e

� �
¼

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

�������������

�������������
¼ 0 ) Te does not exist

and for Figure 7 (right) (called To) to:

Figure 7.
Potential nodes ui and

mid-element nodes vi at a
rectangle structure with

an even (left) and an odd
(right) number of

constant-linear elements
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T21
o · u ¼ 2v )

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

2
66666664

3
77777775

u1

u2

u3

u4

u5

2
666666664

3
777777775
¼ 2

v1

v2

v3

v4

v5

2
666666664

3
777777775

) detðT21
o Þ ¼ 2 ) T ¼ 2To ¼

1 21 1 21 1

1 1 21 1 21

21 1 1 21 1

1 21 1 1 21

21 1 21 1 1

2
66666664

3
77777775

It can be shown that this is a periodical problem, i.e. the transformation matrix T exists
always for an odd number of constant-linear mixed elements per closed contour only.
For an even number of elements T21 will always result in a singular matrix. That
means, for a global discontinuous constant-linear mixed element formulation the
contour discretization must not have an even number of elements! The transformation
matrix T, however, is fully populated and thus, the matrix multiplication H · T will
cause a non-negligible additional effort for system matrix compilation and further, it
will increase the time consumption for the field computation. The structure of T is
quite simple – because cyclical – and therefore, an inversion of T21 at runtime is not
required. The effect is exemplary and is shown in Figure 8. But it has been found that
the transformed constant-linear mixed elements usually consume less CPU-time than
the constant standard element formulation for a similar precision in surface results of
non-convex structures.

Such an effort is not necessary for problems with only constant Dirichlet-conditions
and some constant Neumann-conditions. In that case constant standard elements can
be employed at Dirichlet-boundaries, because the linear interpolation ability is not used
here. But especially for inner edges, e.g. between two materials, the use of transformed
elements is strongly recommended.

6. Conclusions
Mixed elements shown here provide a directionally independent approximation quality
of the gradient and thus, a more homogeneous error distribution within the domain.
For adaptive mesh refinement methods based on error estimations the property of error

Figure 8.
Structure of Figure 6
computed with
constant-linear mixed
elements without (left) and
with (right) global
transformation
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locality is an indispensable precondition. Furthermore, such mixed elements can
reduce the number of necessary elements for field computations and thus, speed up the
method. The integration effort of constant-linear elements shown here is 3ðN 2 2 2N Þ:
This is usually more than for constant standard elements 2ðN 2 2 N Þ; but less than for
linear standard elements 4ðN 2 2 2N Þ:

As well as for constant standard elements the integrals of constant-linear mixed
elements can be carried out analytically. This further reduces field confusions at border
adjacencies as it is happening by often using numerical Gaussian quadrature formulas.
In standard BEM applications often observed inclination of numerical errors by
structures with low distant edges (like the re-entry cut in Figure 5) vanishes almost
completely by using the combination of analytical integration and mixed element
formulation. Figure 9 shows an impression of the behavior.
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Abstract This paper deals with the coupled mechanical-electrostatic analysis of a shunt capacitive
MEMS switch. The mechanical and electrostatic parts of the problem are modelled by the FE and
BE methods, respectively. The fast multipole method is applied to reduce the storage requirements
and the computational cost of the BE electrostatic model. An adaptive truncation expansion of the
3D Laplace Green function is employed. The strong interaction between the mechanical and
electrostatic systems is considered iteratively.

1. Introduction
Electrostatic parallel-plate actuators are widely used in many types of
microelectromechanical systems (MEMS). MEMS switches can be used in series or
shunt mode and their contacts can be resistive or capacitive (Brown, 1998; Tilmans,
2002). A shunt capacitive MEMS switch consists of a metal armature (bridge)
suspended over a bottom conductor, e.g. the center conductor of a coplanar waveguide,
mechanically anchored and electrically connected to the ground. A thin dielectric film
is deposited on the bottom conductor (Figure 1). When the bridge is up, the capacitance
of the switch is very small and the RF signal passes through freely (the RF switch is
on). By applying a bias voltage the switch is actuated: an electrostatic force occurs
between the top and bottom conductors and the bridge is pulled down, the capacitance
increases and causes an RF short to ground (the RF switch is off) (Brown, 1998;
Tilmans, 2002).

These actuators can be treated, in first approximation, as lumped spring-mass
systems with a single mechanical degree of freedom (Tilmans, 2002). This analysis is
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helpful for physical insight, but disregards important effects such as the bending of the
top plate and the stiction between the bridge and the bottom contact (Brown, 1998).
The performance of RF MEMS switches strongly depends on the deformation of the
top electrode. A detailed knowledge of the exact deformation for an accurate estimate
of the capacitance is thus crucial.

A boundary element (BE) approach is particularly suited for the analysis of the real
electrostatic problem (Farina and Rozzi, 2001). Indeed, the BE method provides a
rigorous treatment for open problems and allows to consider the deformation without
any remeshing. The elastic deformation of the top plate (and the suspension beams)
can be handled by means of a finite element (FE) model. It depends directly on the
electrostatic force exerted on the bridge and the material properties. The electrostatic
field induces a force distribution, the value of which increases when the distance
between the top and bottom plate diminishes. This interaction between the electrostatic
and mechanical systems can be considered iteratively.

A significant disadvantage of the BE electrostatic model is that it leads to a fully
populated system matrix limiting the size of the problems to be handled. The
fast multipole method (FMM) (Rokhlin, 1983), combined with an iterative solver,
e.g. GMRES (Saad and Schultz, 1986), can be employed to overcome this limitation by
diminishing both storage requirements and the computational time. The FMM method
has succesfully been applied to solve electrostatic problems in Buchau et al., 2000; and
Nabors and White, 1991.

In this paper, we discuss the coupled mechanical-electrostratic analysis of a
capacitive MEMS shunt switch. Section 2 outlines the electrostatic BE model of the
actuator. The FMM is briefly described in Section 3. An adaptive truncation scheme for
the 3D Laplace Green function is employed. Section 4 deals with the elastic deformation
FE model. In Section 5, the application example is considered. Simulated results
obtained by means of different software packages are briefly compared.

2. Electrostatic BE model
We consider an electrostatic problem in R3: The conductors are embedded in multiple
homogeneous isotropic dielectrics and set to fixed potentials.

The surfaces of conductors and dielectrics G ¼ GC < GD are discretised with plane
triangles. The surface charge density q is assumed to be piecewise constant.
The conductors can be replaced by their charge density on their surfaces qc and

Figure 1.
Electrostatically actuated

capacitive shunt switch
implemented on a CPW

transmission line. Side and
top views

Shunt capacitive
MEMS switch
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the homogeneous dielectrics by the polarisation charge qp. The total charge on the
interface conductor-dielectric GC is given by the sum of both types of charges.
Analogously, on the surface between two dielectrics GD the total charge is the sum of
the polarisation charge due to both dielectrics (Rao et al., 1984). The following system
of nq linear equations has to be solved

MQ ¼ B; ð1Þ

where Q ¼ ½q1. . .qnq
�T contains the charge densities on the elements and B ¼

½b1. . .bnq
�T depends on the boundary conditions. For an element on the surface of a

conductor GC, the entry in B is the imposed potential; for an element on the interface
between two dielectrics GD, the entry in B is zero. The elements of the dense
nonsymmetric matrix M when k is an element on a conductor are given by

Mk;l ¼
1

10

I
Gl

GðrkÞ dG 0 with GðrkÞ ¼
1

4prk

: ð2Þ

GðrkÞ is the 3D Laplace Green function, rk ¼ jrk 2 r 0j being the distance between
a source point r 0 (on Gl [ G) and an observation point r k (on GC). Considering the
continuity of the normal component of the dielectric displacement d ¼ 1e at the
dielectric-to-dielectric interface, GD, the elements of M if k is an element on GD read:

Mk;l ¼

1k2 2 1k1

10ð1k1 þ 1k2Þ

I
Gl

grad GðrkÞ · nk dG 0; k – l;

1

210
; k ¼ 1:

8>>><
>>>:

ð3Þ

where nk is the outward-normal unit vector pointing into the dielectric with
permittivity 1k2: The integrals in equations (2) and (3) can be evaluated analytically
(Graglia, 1993).

The electrostatic force Fe distribution can be calculated as

FeðrÞ ¼
1

2
qðrÞeðrÞ: ð4Þ

The electric field e as r approaches the interface conductor-dielectric can be expressed
as (Rao et al., 1984):

e^ðrÞ ¼ ^n
qðrÞ

210
þ

1

4p10
kgrad GðrÞ; qðr 0ÞlG; ð5Þ

where + indicates the outer face of the conducting surface and 2 the inner one, n is the
normal unit vector pointing outside the conductor and k·; ·lG denotes a surface integral
on G of the product of its arguments. As inside the conductor e2 ¼ 0; considering
equation (5), it follows that eþ on the surface of the conductor is given by

eþðrÞ ¼ n
qðrÞ

10
: ð6Þ

Substituting equation (6) in equation (4), the expression of Fe as a function of the
charge distribution is obtained as
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FeðrÞ ¼
1

210
q 2ðrÞn: ð7Þ

3. Fast multipole method
The implementation of the FMM requires the grouping of the elements on the surface
boundary

G ¼ <#g
g¼1Gg:

A good choice is a scheme based on cubes, i.e. un octree (Buchau et al., 2000; Nabors
and White, 1991). Note that in a single level FMM, as described in the present paper,
only the finest level of the octree is. The interactions between the distant groups are
then determined by means of the multipole expansion of the Laplace Green function.

3.1 Multipole expansion
Let Gs be a source group with center rsc and a source point rs; and Go an observation
group with center roc and an observation point ro: We define the vectors r ¼
ro 2 roc ¼ ðr; u;fÞ; rc ¼ roc 2 rsc ¼ ðrc; uc;fcÞ and r 0 ¼ rsc 2 rs ¼ ðr 0; u 0;f 0Þ:
Omitting the factor 1=4p; the 3D Laplace Green function (2), with r ¼ jro 2 rsj; is
expanded as (Rokhlin, 1983):

1

r
¼ R

X1
m¼0

Xm

n¼2m

X1
u¼0

Xu

v¼2u

Dm;n Tmþu;nþv Au;v

 !
; ð8Þ

with

Dm;nðrÞ ¼
r mLn

mðu;2fÞ

ðm þ nÞ!
; ð9Þ

Tmþu;nþvðrcÞ ¼
ðm þ u 2 ðn þ vÞÞ!

rmþuþ1
c

Lnþv
mþuðuc;fcÞ; ð10Þ

Au;vðr
0Þ ¼

r 0uLv
uðu

0;2f 0Þ

ðu þ vÞ!
; ð11Þ

where Ln
mðu;fÞ ¼ Pn

mðcos uÞe inf; Pn
m being the Legendre function of degree m and

order n. The imaginary number is denoted ı and R indicates the real part.
In practice, the multipole expansion (8) must be truncated by taking 0 # m # p and

0 # u # p; where the truncation number p must be sufficiently large to limit the error
to a prescribed value 1. In most cases, the conventional choice p ¼ log2ð1=1Þ (Rokhlin,
1983) is too conservative. Indeed, if r 0 ! rc and r ! rc; a smaller number of terms
suffices. Let us consider the radii of the source and observation groups, Rs ¼
maxGs

ðr 0Þ; Ro ¼ maxGo
ðrÞ; and the distance between their centers d. A more economic

law p ¼ pðRs=d;Ro=d; 1Þ; proposed by some of the authors in Sabariego et al. (2004),
considers those distances.

The function grad G in equation (3) can be expanded in a similar way. It suffices to
derive equation (9) with respect to the coordinates of the observation point.
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3.2 Application to the BE model
Two groups Gs and Go are said to be “far” groups if Rs=d , t and Ro=d , t; where d
is the distance between the group centers and t is chosen smaller than 1/2.

For demonstrating the FMM, the BE dense matrix M equations (2) and (3) can be
formally written as

M < Mnear þ Mfar ¼ Mnear þ

Go;Gsfar

X#g

o¼1

X#g

s¼1|fflfflfflffl{zfflfflfflffl}
Mfar

o;s: ð12Þ

Let us consider the degrees of freedom qk and ql of q in the respective far groups
Go [ GC and Gs [ G. Substituting equation (8) in equation (2), the contribution to the
corresponding element ðM far

o;sÞk;l in M far is given by

R
Xp

m¼0

Xm

n¼2m

MD
o;k;m;n

Xp

u¼0

Xu

v¼2u

MT
mþu;nþv MA

s;l;u;v

 !
; ð13Þ

MD
o;k;m;n ¼

Z
Go;k

Dm;n dG; MA
s;l;u;v ¼

Z
Gs;l

Au;v dG; ð14Þ

MT
mþu;nþv ¼

1

4p10
Tmþu;nþv: ð15Þ

The iterative solution of the system of algebraic equations requires the multiplication
of Mfar by a trial vector Q. Group by group, the field produced by the electric charge q
in the considered group is aggregated into its center by equation (14). This aggregated
field is then subsequently translated to the centers of all the far groups by equation
(15), and finally, the aggregated and translated field are disaggregated into the degrees
of freedom of the far groups, thanks to equation (14).

The multiplication of MfarQ is further accelerated by means of the adaptive
truncation scheme following the law p ¼ pðRs=d;Ro=d; 1Þ (Sabariego et al., 2004).
In case of preconditioning of the iterative solver, the preconditioner is based on the
sparse matrix comprising the BE near-field interactions.

The assembly stage of the FMM consists in calculating and storing the required
complex numbers MD

o;k;m;n;M
T
mþu;nþv and MA

s;l;u;v: The matrix Mfar itself is never built.
The integrations in equation (14) are done numerically, but as we are dealing with far
interactions a limited number of Gauss integration point suffices. The matrix Mnear is
calculated in the conventional way (see previous Section) and stored using a sparse
storage scheme. For the MD and MA data of a given group, the truncation number p
considered during the FMM assembly stage is determined by its closest far group,
p ¼ pmax: For the MT data, the truncation number p is determined by the two groups
Gs and Go involved in the translation, p ¼ pso: During the iterative process, the
aggregation step is carried out with p ¼ pmax; while p ¼ pso suffices for the translation
and disaggregation.
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4. Elastic deformation-FE model
The upper electrode is deformed by the electrostatic force exerted on it. The elastic
equation has to be considered alongside the electrostatic equations. For linear elastic
isotropic materials, it reads:

DTEDu þ F ¼ 0; ð16Þ

where D is the differential operator matrix with transpose DT, E is the elasticity
tensor, u is the displacement vector and F is the total force exerted. The elasticity
tensor E relates the stress tensor with the strain tensor. It depends on the Young’s
modulus E and the Poisson’s ratio n (Pilkey, 2002).

5. Application example
The shunt capacitive MEMS switch shown in Figure 2 is chosen as the test case.
It concerns a perforated top plate ðthickness ¼ 4mmÞ suspended by a set of beams, and
a bottom plate ðthickness ¼ 0:5mmÞ coated with a thin dielectric layer ðthickness ¼
0:2mm; 1r ¼ 7Þ: The beam suspension allows a vertical movement with respect to the
fixed bottom plate. The top plate is perforated to facilitate the under-etching of the
structure. The dimension of the holes is 25mm £ 25mm; with a pitch of 50mm:
The mechanical material constants of the top plate are E ¼ 70 Gpa and n ¼ 0:3:

The BE method with FMM acceleration is applied for solving the electrostatic
problem while the mechanical problem is handled by a FE model. All the above
mentioned methods are implemented in GetDP (2003). The behaviour of the switch is
simulated using a discretisation consisting of 6,544 triangles and 11,151 tetrahedra,
which yields 6,544 degrees of freedom for the piecewise element constant charge q and
56,331 degrees of freedom for the second-order interpolation of the displacement m.

The optimal number of FMM groups (for this particular mesh) is found to be 35.
The maximum and average truncation number are pmax ¼ 6 and pav ¼ 4 for
Rfar ¼ 135mm and 1 ¼ 1026:

The electrostatic and mechanical systems are solved iteratively by obtaining the
new electrostatic force distribution and the new displacement. The number of

Figure 2.
Geometry of shunt

capacitive MEMS switch:
Lc ¼ 475mm, bc¼ 275mm,

Lin¼ 485mm,
bin¼ 285mm,
Ls¼ 625mm,

Lb¼ 205mm, bb¼ 20mm,
and da¼ 80mm
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iterations required for sufficient convergence of, e.g. the capacitance increases as the
applied bias voltage approaches the pull-in voltage and the deformation of the top plate
becomes bigger.

The calculated zero-voltage capacitance CV¼0 and pull-in voltage V IN are 0.36 pF
14.2 V, respectively.

The deformation of the top electrode for a bias voltage of 11 V for the successive
iterations is shown in Figure 3. Convergence is achieved after nine iterations.

The results obtained with GetDP (GetDP, 2003) are compared with those given by the
commercial software packages Coventor (Coventor, Inc. 2003) and FemLab (FemLab,
1997-2004). In the simulations performed with the commercial programs, only a quarter
of the geometry is considered. In the Coventor simulation, the electrostatic part is
modelled by means of the BE method while the mechanical part is dealt with using the
FE method and second-order elements. Only symmetry boundary conditions are
considered for the mechanical problem. In the FemLab computation, the whole
electromechanical problem is solved by the FE method. Symmetry conditions are
imposed for the electrostatic problem. With regard to the mechanical part, the elastic
behaviour of the suspension (beams) is approximated by a stiffness constant (Brown,
1998; Tilmans, 2002). For the face of the top electrode that is coupled with the suspension,
the displacement is obtained by dividing the total electrostatic force by the stiffness
constant.

The nominal capacitance CV¼0 obtained by Coventor and Femlab is 0.4 and 0.37 pF,
respectively. The pull-in calculated voltage is 14.24 V for Coventor and 17.25 V.

The computed value of the capacitance as a function of the applied voltage is shown
in Figure 4 for the three different solvers. The curves C 	 V obtained with GetDP and
FemLab agree well for low applied voltage, when the deformation is small. As the
applied voltage increases, an accurate estimate of the displacement becomes critical,
the approximation used for the suspension does not suffice. On the contrary, the
agreement between the curves obtained with GetDP and Coventor is better as the
voltage increases. The influence of three quarters of the device are disregarded for the
electrostatic computation, but the mechanical part is solved accurately. Figure 5 shows

Figure 3.
Convergence of the
vertical displacement
along a line through
the suspension beams
and perforated plate
for an applied bias
voltage of 11 V
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the maximum vertical displacement of the top electrode as a function of the applied
bias voltage. A good agreement between the values obtained by means of GetDP and
Coventor is observed. Approximation is used for the mechanical problem with a
stiffness constant for modelling the suspension in the FemLab.

6. Conclusion
A shunt capacitive MEMS switch has been modelled. The BE method, accelerated by
the FMM, and the FE method have been applied to solve the electrostatic and
mechanical problem, respectively. An adaptive truncation scheme for the 3D Laplace
Green function has been employed. The results have been compared with those
obtained with the commercial packages Coventor and FemLab.

Figure 4.
Calculated capacitance vs

the applied bias voltage
simulation explains the

divergence of the curves

Figure 5.
Maximum vertical

displacement of the top
electrode vs the applied

bias voltage
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Abstract Methods to impose a voltage or a current in massive conductors in dual
magnetodynamic potential formulations (A-w and T-KI-V) are presented. In the A-w
formulation, a supply voltage can be naturally imposed at the terminals of a conductor, but not
a supply current. An equation must be added. This is the opposite for the T-KI-V formulation.
In the paper all methods are described and compared on the basis of an example.

1. Introduction
In the case of electromagnetic systems working at high frequencies, the distribution of
the current cannot be considered as uniform in conductors. It is necessary to consider
the eddy current effects. Two potential formulations can be used to solve such a
problem: the A-w formulation and the T-KI-V formulation. Either the current or the
voltage is imposed to the conductor. Imposing such global quantities is not necessarily
easy. Some methods have already been proposed (Dular, 2000) using special test
functions.

In this communication, we propose to use functions already used in magnetostatics
to impose currents and voltages in potential formulations (Le Menach, 2000) and to
compare them.

First, we present the magnetodynamic problem. Second, the A-w and T-KI-V
formulations are described. Then, we develop methods to impose the current and the
voltage at the terminals of a conductor in both formulations. Finally, an application
example is studied to compare both formulations in terms of accuracy, memory
resource requirements and computation times.

2. Magnetodynamic problem
We consider a simple system composed of a conducting part in a domain Dc with
boundary Gc enclosed in a domain D. We denote G the boundary of D. The counterpart
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of Dc in D is assumed to be a non-conducting domain (Figure 1). In magnetodynamics,
Maxwell’s equations are used to calculate the electric and magnetic field distributions:

curl E ¼ 2›tB ð1aÞ

curl H ¼ J ð1bÞ

with E the electric field, B the magnetic flux density, H the magnetic field and J the
current density. The constitutive laws are:

B ¼ mðHÞH and J ¼ sE ð2Þ

with s the electric conductivity. The conductivity is equal to zero in the counterpart
of Dc in D, and m the magnetic permeability. Boundary conditions are added to ensure
the uniqueness of the solution:

B · n ¼ 0 on GB and H £ n ¼ 0 on GH ð3Þ

with GB and GH two complementary parts of G such that G ¼ GB < GH: In the
following, we denote Gc1 and Gc2, two surfaces of Gc which belong also to G (Figure 1).
On these surfaces the supply voltage V applied at the conducting medium terminals or
the current I flowing in it is imposed. To solve the previous equation system
by the finite element method, two potential formulations can be used. In the following,
the A-w and T-KI-V formulations are presented, and in each formulation, methods are
proposed to impose the current I or the voltage V.

3. A-w Formulation
In the case of the A-w formulation, two potentials are introduced: a magnetic vector
potential A and an electric scalar potential w. Since the magnetic flux density is
divergence free, we have:

B ¼ curl A with A £ n ¼ 0 on GB ð4Þ

Then, using equation (1a), the electric field can be defined in terms of A and w:

E ¼ 2›tA � gradw ð5Þ

Finally, the equation system becomes:

curl ðm21 curl AÞ þ s ð›tA þ gradwÞ ¼ 0 ð6Þ

divs ð›tA
þgradwÞ ¼ 0 ð7Þ

Figure 1.
Geometry of the
application example
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In the non-conducting part, equation (7) vanishes and the remaining system
corresponds to the magnetostatic formulation (equation (6)). To numerically solve the
equation system, Whitney’s elements can be used (Bossavit, 1988). The potentials A
and w are discretised in the edge element space and in the nodal element space,
respectively. Then, the discrete forms of A and w are written:

A ¼
a[D

X
Aava and w ¼

n[Dc

X
wnvn ð8Þ

with va the interpolation function associated to the edge a, vn the nodal function
associated to the node n, Aa the circulation of A along the edge a and wn the value of w
at the node n.

To impose a voltage V at the terminals of the conducting part (Gc1 and Gc2), the
values of w are constant on Gc1 and Gc2 such that:

V ¼ wi 2 wj ;i [ Gc1 and ;j [ Gc2 ð9Þ

The value of w on Gc2 can be fixed arbitrarily. Fixing the value of w equal to zero on Gc2,
w can be written under the following form:

w ¼
n[Dc�Gc1�Gc2

X
wnvn þ V

n[Gc1

X
vn ð10Þ

Moreover, on GB-Gc1-Gc2, the nodal values of w are also cancelled to satisfy the
boundary condition (3). Consequently, in A-w formulation, a voltage can be naturally
imposed by fixing the values of V at the terminals of the conducting part. The second
term of w in equation (10) then becomes a source term in equation (6).

To impose a current I in Dc, an equation is added to the system, the voltage V is then
an unknown. This approach has been already developed by Dular (2000). A scalar
function a can be defined by the sum of nodal functions associated to the nodes on Gc1:

a ¼
n[Gc1

X
vn ð11Þ

The expression of the current is obtained using the weak formulation of equation (7):

I ¼ ðJ; gradaÞD ¼ ð2sð›tA þ gradwÞ; gradaÞDc1 ð12Þ

with (a, b)c a volume integral onto c of the dot product of vectors a and b. The function
a is non-zero only onto a domain Dc1 of Dc gathering all elements having at least one
node belonging to Gc1. Calculation of equation (12) must be carried out only on the
small domain Dc1. Equation (12) can be also used to compute the current I by a post
processing computation in the case of a voltage supply.

4. T-KI-V formulation
In the T-KI-V formulation, two potentials are introduced: an electric vector potential T
and a magnetic scalar potential V. A vector K is also introduced such that curl K ¼ N
to satisfy Ampere’s law. In this relation, the vector N is divergence free outside of Dc.
Moreover, it is defined such that its flux flowing between Gc1 and Gc2 is equal to 1
(Le Menach, 2000). Based on the previous conditions, the magnetic field can be written:
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H ¼ T þ KI � gradV; T £ n ¼ 0 on GC; T ¼ 0 in D � Dc

and K £ n ¼ 0 on GH; V ¼ 0 on GH

ð13Þ

Finally, the equation system becomes:

curl ðs21curl ðT þ KIÞÞ þ ›tðmðT þ KI � gradVÞÞ ¼ 0 ð14Þ

divm21ðT þ KI � gradVÞ ¼ 0 ð15Þ

Equation (14) is defined only in Dc. On the other hand, equation (15) is defined on the
whole domain and corresponds to the equation to be solved in magnetostatics (with
T ¼ 0). By using Whitney’s elements, the potentials T and V are discretised in the
edge element space of Dc and in the nodal element space of D, respectively. The field K
is discretised in the edge element space by:

K ¼
n[D

X
Kava ð16Þ

with Ka the circulation of K on the edge a. The distribution of K can be determined by
an automatic procedure from a vector N already calculated in the facet element space
(Le Menach, 2000). Other methods can be used to determine the vector K (Dular, 1997;
Meunier, 1998). In the T-KI-V formulation, the current can be naturally applied by
fixing the value of I. The term KI then becomes a source term in equations (14) and (15).
To apply a voltage V, an equation is added to the system. The current I is then an
unknown. This equation can be obtained with a similar approach than (Le Menach,
2000) by considering a weak form of equation (14) with the vector K as test function.
Thus, we have:

V ¼ ðE; curl KÞD þ ›tðB;KÞD

¼ ðs21curl ðT þ KIÞ; curl KÞD þ ›tðmðT þ KI � gradVÞ; KÞD

ð17Þ

The current I is then an unknown of the system. Contrary to the A-w formulation, the
previous equation has to be calculated on the whole domain because K is defined on D.
Nevertheless, some conditions on vector K can be added to reduce its domain of
definition. This domain must contain domain Dc and be simply connected. Equation
(17) can be also used to compute the voltage by a post processing computation in the
case of current supply.

5. Application
5.1 Presentation of application example
As an example of application, a coil enclosed in an air box is considered. Its geometry is
shown in Figure 2. The mesh is made up of tetrahedral elements. Two meshes have
been considered, the first (M1) has 3,612 nodes and 20,436 elements and the second
(M2) has 20,179 nodes and 116,906 elements. For both formulations, both kinds of
supply either a current I or a voltage V are compared. In the current supply, a
sinusoidal current of magnitude equal to 3.14 A is applied to the conductor. We also
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consider two supply frequencies ( f ¼ 50 Hz and 1 kHz). Two periods have been
simulated with 25 time steps per period.

In the case of A-w formulation the scalar potential w on Gc1 and Gc2 are unknowns of
the problem. Consequently, it is easy to calculate the voltage V corresponding to the
applied current. As explained above (equation (17)) it is possible, in the case of T-KI-V
formulation, to calculate in a post-processing step the voltage V with an imposed
current. Consequently, to verify our models, we have calculated for both formulations
the current when we applied the voltages V computed previously.

In these conditions, the calculated current magnitude should be equal to 3.14
whatever the formulation is (if errors introduced by quantification and iterative solver
are neglected). The calculations have been carried on a 2 GHz INTEL XEON.

In Figure 3, the distribution of vector K is given on the cutaway plan shown in
Figure 2. This one has no physical meaning and is not a physical field, but it verifies
Ampere’s law outside the massive conductor (all circulations of K along a closed path
is equal to I if it encircles the conducting part and equal to zero on contrary).

In Figure 4, the distribution of J obtained from T-KI-V formulation is given for both
frequencies on a section plane in the first time step. They are not the same on S1 and S2
for both frequencies. S1 and S2 are shown in Figure 3.

There is the skin depth effect and also the proximity effect (i.e. the influence of the
other turns of the conductor). This phenomenon appears clearly on the current
distribution at 1 kHz which is not axisymmetrical in a section S1. The current density
is lower in an area close to the conductor (S2).

Figure 2.
Geometry of the

application example

Figure 3.
Distribution of K
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5.2 A-w formulation
In Figures 5 and 6, the evolution of the voltage vs time is given for both meshes and
both frequencies with the conductor supplied by a sinusoidal current. For a frequency
of 50 Hz, the conductor behaves as a resistor, the phase difference between the current
and the voltage is practically zero. For a frequency of 1 kHz, the phase difference is then
practically equal to 358 and the magnitude of the voltage V increases. The impedance
of the coil increases with the skin depth and proximity effects and also the self
inductance effect.

In Table I, the magnitudes of the voltage and the current are given for a frequency
of 50 Hz. In the case of current supply, equation (12) is added to the matrix system.
The number of non-zero terms of the added line (corresponding to equation (12)) is
small. As noticed earlier, only nodes located of Gc1 are considered, therefore, only the
unknowns associated to nodes of Gc1 leads to non-zero terms (one of the two surfaces of
the massive conductor belonging to the boundary of the studied system).

Figure 4.
Distribution of J (A/m2)
obtained with the T-KI-V
formulation. (a) f¼50 Hz;
and (b) f ¼ 1 kHz
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Consequently, computation time for both supply current and voltage are similar. The
number of iterations increases slightly when an equation is added. By imposing the
evolution of the voltage obtained by a current supply (for example, for M1 a voltage of
magnitude of 0.105 V is applied), the magnitude of I is close to 3.14 A.

Figure 5.
Evolution of the voltage V
versus time for f ¼ 50 Hz

Figure 6.
Evolution of the voltage V
versus time for f ¼ 1 kHz

Mesh
M1 M2

Supply Current Voltage Current Voltage
Unknowns 21,934 21,933 125,038 125,037
Non-null terms of the matrix 228,158 228,049 1,300,172 1,299,861
Average ICCG iteration 749 680 1,929 1,771
Computation time (min) 12 9 222 188
Vmax (mV) 1.05 1.02
Imax (A) 3.14 3.14

Table I.
Magnitudes of currents

and voltages and features
of the matrix system

( f ¼ 50 Hz)
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5.3 T-KI-V formulation
In Figures 7 and 8, the evolution of the voltages versus time are given for both meshes
and both frequencies when a sinusoidal current is applied. The latter is very similar to
the curves obtained in the case of the A-w formulation.

In the case of voltage supply, equation (17) is added to the matrix system. Here,
(Table II) the gap of calculation time between the models with two types of supply is

Figure 7.
Evolution of the voltage V
vs time for f ¼ 50 Hz

Figure 8.
Evolution of the voltage V
vs time for f ¼ 1 kHz

Mesh
M1 M2

Supply Current Voltage Current Voltage
Unknowns 7,641 7,642 50,305 50,306
Non-null terms of the matrix 80,665 88,307 580,484 630,790
Average ICCG iteration 49 47 107 105
Computation time 2 min 23 s 5 min 3 s 17 min 112 min
Vmax (mV) 0.928 0.987
Imax (A) 3.125 3.13

Table II.
Magnitudes of currents
and voltages and features
of the matrix system
( f ¼ 50 Hz)

COMPEL
23,4

892



more important. The number of non-zero terms in the matrix has increased much more
than with the A-w formulation. That is due to the added line which has a lot of non-zero
terms. The vector K is defined in the whole domain. Consequently, the computation
time is more important in the case of voltage supply.

5.4 Comparison of both formulations
For the considered example, both formulations give similar results in terms of global
values (current, voltage, . . .) but the T-KI-V formulation is much faster. The difference
is the greatest in the case of current supply (ratio of ten between both formulations).
Moreover, improvements can be still done to speed up the solution when we impose
voltage in the T-KI-V formulation. This improvement can be obtained by reducing the
definition domain of K by adding boundary conditions inside the domain D.

6. Conclusion
Two magnetodynamic formulations have been presented. For each formulation, some
methods have been given to impose a current or a voltage in a conductive medium
using special test functions. An application example has been studied using both
formulations and with two kinds of supply (current and voltage). For this example, the
T-KI-V formulation seems to be well adapted because the global quantities obtained
by both formulations are very similar, but its computation time is smaller.
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Modelisation of thin cracks with
varying conductivity in

eddy-current testing
Ph. Beltrame

University of Cottbus, Cottbus, Germany
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Abstract In the ideal crack model (negligible thickness and an impenetrable barrier to electric
current) in eddy-current testing frame, the field-flaw is equivalent to a current dipole layer on its
surface. This dipole density is the solution of an integral equation with a hyperstrong kernel. This
model has shown its efficiency, as well the computing accuracy, as for the CPU time. Furthermore,
the case of a current leakage across crack was considered by introducing an equivalent conductivity
of the crack. This paper aims at simulating a local varying conductivity. In particular, we focus on a
constant piecewise conductivity. In this last case, because of the presence of the hypersingular
kernel in the equation, the numerical scheme using the ideal case has to be modified.

1. Introduction
The thin crack problem in eddy-current testing (ECT) – i.e. the crack width e (Figure 1)
is small compared to its other dimensions and skin depth d – constitutes a major
difficulty for the simulation. It is commonly assumed that a surface crack is “ideal”:
being infinitesimally thin and allowing no current to flow across it. Then, Bowler
(1994) showed that the crack is equivalent to a current dipole surface of density
p ¼ pn; where n is the normal of the crack (Figure 1). The density p is the solution of
an integral equation with an hypersingular kernel on the crack surface related to the
incident current. The resolution with a collocation method and second order shape
functions is carried out by Beltrame and Burais (2002a) and the improvement with
special elements at the crack edges is described by Beltrame (2002). The variation DZ
of the coil impedance is obtained by a regular integration on the density p of the crack
surface. The eddy-current perturbation is directly deduced from this density, but sets a
problem of quasi-singular integrals. It is overcome with a regularization-like technique
(Beltrame and Burais, 2002b).

The ideal crack model was improved by Harfield and Bowler (1998) and Villone and
Harfield (2000) by introducing an uniform equivalent conductivity sf of the crack using
two methods: finite elements and integral equations. This last formulation differs from
our case and is applied for the thin skin depth approximation (frequency f . 10 MHz).
Recently, Beltrame and Burais (2004), without this assumption of high frequency, have
improved the ideal crack model by considering two small parameters: equivalent
conductivity sf and a small thickness e of the crack. The last one is modelised by
adding a correcting term in the impedance change. The conductivity modifies the
integral equation by adding a term proportional to sf.
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This paper aims to treat the case in which both parameters are no more constant.
Because the thickness e takes place only in post-processing, its variations do not
change basically the modelisation. It is not the case for the conductivity, first we give a
criterion of the validity of the formulation presented by Beltrame and Burais (2004).
Secondly, the convergence of the numerical scheme used in Beltrame and Burais
(2002a, b, 2004) is discussed. We prove that it fails in the case of a discontinuity of the
local conductivity. Such conductivity discontinuities can modelise, for example, a
“material bridge”: the crack is very thin at the surface and then a lot of contact between
both crack surfaces crack induce a non-negligible conductivity, but the in-depth region
is an electric insulation ðsf ¼ 0Þ because of the large thickness no contact occurs
(Figure 2).

2. Formulation
The lengths are divided by the standard skin depth d, the conductivity by sm 2 sf; sm

being the tested piece conductivity, and the electric current density is divided by a
reference Jmax. Thus, we have the new variables:

~sf ¼
sf

sm 2 sf

~e ¼
e

d

~J ¼
J

Jmax

~p ¼
d

J 0
p

ð1Þ

Figure 1.
Schematic configuration

for the crack detection

Figure 2.
Three model examples of

the crack: zero
conductivity (a), uniform

conductivity (b), and
variable conductivity (c)
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Because the above equations are always in the adimensional form, the tildes will be
omitted on the variables J, p. . ., but not when we are citing the physical parameters s, e.

The tested piece is an amagnetic conductor, and the crack has a negligible
thickness, more concretely, we suppose that:

~e ¼
e

d
! 1 ð2Þ

2.1 Equation of p
In the previous assumptions frame, the J electric field in the presence of the crack is
related to the J0 unperturbed one (without crack) by an integration of the dipole density
p on the S crack surface (Beltrame, 2002; Bowler, 1994):

Jðr 0Þ2 J0ðr
0Þ ¼ 2j

Z
S

Gðr 0; rÞpðrÞ dSr ð3Þ

where G is the electric-electric Green tensor and r 0 an “obsevation” point in the tested
piece. If r 0 is on the crack then the integral has to be interpreted as the finite part of
Hadamard, noted FP. The physical meaning and the computation methods of the finite
part of the integral are explained in Beltrame and Burais (2002a). In order to obtain an
equation on p the observation point r 0 tends to a point on the crack surface and
equation (3) is projected on the crack normal n, then:

Jnðr
0Þ2 J 0nðr

0Þ ¼ 2j FP

Z
S

n · Gðr 0; rÞpðrÞ dSr ð4Þ

If the crack is a perfect insulating Jn ¼ 0; but in the case of a local current leakage on
the surface crack, the component Jn has to be expressed. In Appendix 1, we give its
expression under the following assumption:

~e ~sf ! 1; ð5Þ

if sf < sm; then the requirement in equation (5) is not satisfied and it will be very
difficult to detect it, so we will assume that the requirement in equation (5) is satisfied.
In this framework, let us introduce the local relative conductance on the crack:

g ¼
~sf

~e
¼

sf

sm 2 sf

d

e
; ð6Þ

This last one is positive and the limit case g ¼ 0 corresponds to the ideal crack and
g!þ1 to the lack of crack (invisible for the eddy-current detection). The equation (4)
of p becomes:

J0ðrfÞ · n ¼ 22jFP

Z
S

n · Gðrf; rÞpðrÞ dSr 2 gðrfÞpðrfÞ ð7Þ

We remark that this equation (7) differs from the ideal case one only by the term
adding: 2gp. So, there does not appear an explicit requirement on the g distribution,
and the formulations between the constant and variable conductivity seem identical.
Nevertheless, the regularity of g could change the density p once, and thus, the
evaluation formula of the singular integral presented in Beltrame and Burais (2002a)
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has to be changed. The necessary modifications are presented in Section 3. Before that
we give the impedance change formula.

2.2 Impedance change
The expression of impedance change is similar to the case of constant conductivity:

I 2DZ ¼

Z
S

J0ðrÞpðrÞ dSr þ j
i

X
ei

Z
S

J0ðrÞAðrÞ dSr ð8Þ

The first term is the classical expression of the ideal case. The second one is deduced
from the thin thick model for an uniform thickness (Beltrame and Burais, 2004) when
the crack thickness is piecewise constant in the direction t1. The expression of the
potential A is given in these references.

3. Numerical implementation
3.1 The main difficulty
We adapt the numerical scheme used in Beltrame and Burais (2002a): it is a collocation
method with a regular quadrangles mesh. The function p is evaluated by a second
degree polynomial interpolation on nine nodes: eight at the boundary; the in-depth
boundary elements special functions are used (Beltrame, 2002). The equation is
evaluated at each center node. At the other boundary nodes the continuity of the
gradient of p is imposed. In fact the solution is at least C 1 in the ideal crack case
(Beltrame and Burais, 2002a).

In the case of local conductance, if the solution p is still regular, then we have to add
only the relative conductance g(rc) in the self terms at each collocation point rc. Yet, the
question is to know the smoothness of p: continuity of p and of fTP, where the
operator fT is the tangential gradient on the crack surface.

3.2 Continuity of p
The continuity of p is related to the assumption of thin crack (equation (2)) and not to
the conductance. Let us suppose that the density is discontinuous at the “double point”
AB, and let us denote C as a way around the crack between A and B (Figure 3). It is
easy to see that the circulation of the electric field between A and B is the difference
pA 2 pB (Beltrame, 2002). Using the Maxwell-Faraday identity, this circulation is the
flux of the induction through the surface S. Because the crack is thin, this surface
vanishes, furthermore the induction is continuous and does not diverge through the
crack (Beltrame, 2002), then this flux tends to zero. Finally, we have proved that the
difference pA 2 pB tends to zero, i.e. p is continuous.

3.3 Continuity of fTp
For the gradient the situation is more difficult. First, in Appendix 2, we prove that a
discontinuity of the conductance induces in the same neighborhood a discontinuity of
the gradient. The jump of the gradient is then evaluated in equation (A9).

Figure 3.
Continuity of p: contour C

around the crack
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If the mesh is chosen such as the junction between the elements on the conductance
discontinuity line, we have to put the jump requirement instead of the continuity as the
one given in the previous numerical scheme. We note that these requirements are
necessary if the nodes are free at this discontinuity line, i.e. if there is no condition on
the gradient, then the system conditionment is very bad and the solution does not
converge.

3.4 Conclusion
For a constant or continuous variation of the relative conductance g, only the term
operator proportional to identity is added. We remark that the conditionment decreases
when the conductance increases. So the numerical scheme of Beltrame and Burais
(2002a, b) can be applied.

If the relative conductance is discontinuous, we have in addition a jump term added
at the discontinuity line. This new scheme still has a still a good conditionment.

4. Results and discussions
The physical parameters of the simulations are those used in the Team Workshop 15
(Bowler, 1994) and we will indicate, in the following, only the modifications. The
conductance varies only in the z-direction. We will consider the following two cases.

(1) the conductance is uniform gðzÞ ¼ g0;

(2) “material bridge”: gðzÞ ¼ g0 . 0 and e1 ¼ 20mm if 0 . z . 21:2 mm else
gðzÞ ¼ 0 and e2 ¼ 0:22 mm:

4.1 Density shape and eddy-current distribution
For an uniform conductance distribution the shape of the density p is not modified and
in the eddy-current distribution the normal component appears at the crack surface
(Beltrame, 2002). In the material bridge, the changes are more interesting. In the
neighborhood of the conductance discontinuity, if z , 21:2 mm the density decreases
rapidly like an in-depth crack edge, but it does not vanish (Figure 4). The phenomenon
is local: a few incident current is deviated to the material bridge region 0 . z .
21:2 mm; the most part decreases under the crack (Figure 5). In “material bridge”
region, the influence of the discontinuity is more global. The density p increases slowly
with respect to the z-direction: almost all current crosses the crack with respect to the
normal direction, but a small tangent component goes to the discontinuity line
(Figure 5).

4.2 Impedance change vs the conductance
In the case 1 the variation of the impedance change vs the conductance are presented
in Beltrame and Burais (2004) and Harfield and Bowler (1998). In this case, an
interesting result is that the resistance R admits a maximum for g – 0: In the case 2,
the maximum for R and X is g ¼ 0 (electric insulation), but the resistance change
admits an extremum for g < 6 and vanishes for g < 0:6 (Figure 6). For r , 0:01 the
impedance change is equivalent to the ideal crack case. For 0:1 , g , 5 the
impedance change decreases a lot. For g . 100 the crack is equivalent to the in-depth
one.
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4.3 Signatures
The coil is moving in the direction of x (Figure 1), and we have represented the
signature for four cracks:

(1) ideal crack;

(2) uniform conductivity g ¼ 5;

Figure 4.
Density p for the case 2

with g ¼ 10. The
coordinates are the

number of the nodes in the
y and z directions

Figure 5.
Eddy current distribution

for case 2 with g ¼ 10

Modelisation of
thin cracks

899



(3) material bridge (case 2) with g0 ¼ 5; and

(4) material bridge (case 2) with g ¼ þ1 (< in-depth crack).

The signature shapes are similar: the jDZ j amplitude increases when the coil draws
close to the crack and reaches a maximum when a coil ring is on the crack and finally
decreases rapidly when the coil center corresponds to crack center (Figure 7).
Obviously, the amplitude of the impedance change is the greatest for the ideal crack
and in the descending impedance amplitude place comes the 3rd, 4th and 2nd cases.
The maximum of the amplitude decreases progressively between these different cases.
But the phase change of case 2 is small. This particularity of case 2 can be explained by

Figure 6.
Variation of the resistance
R and the reactance X vs
the conductance

Figure 7.
Signatures in four cases
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the fact that the electric current near the surface (i.e. the greatest amplitude) is slightly
deviated by the crack contrary to the other cases.

5. Conclusion
The case of a varying conductance in the thin thickness frame was treated. In the case
of a discontinuity of the conductance, we have proven and explicated the jump of the
gradient of the dipole density. The necessary modifications are implemented in the
numerical scheme. This formulation was applied for a planar surface crack with a
material bridge to compute the impedance change and represent the eddy-current
distribution near the crack.

The perspective is the confrontation with the experiment and in particular to precise
the condition (5). The second one is to consider a non-planar surface: planar piecewise
or curve surface.
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Appendix 1. Expression of Jn

Let us consider the potential vector formulation (A,V) with the Coulomb gauge. The deviation of
the electric current lines is the principal cause of the current dipole source. Then, the
phenomenon is essentially electrostatic, more concretely in Beltrame (2002), we prove that the
potential vector A is continuous through the crack and the adimensional jump [V ] of the scalar
potential V is the opposite of the adimensional dipole density p: p ¼ 2½V �: The normal electric
current density Jn is decomposed into two parts:

Jn ¼ ~sf 2
›V

›n
þ jAn

� �
:

Because the crack thickness is small:

Modelisation of
thin cracks

901



›V

›n
< 2

½V �

~e
¼

p

~e
:

Then, we have:

Jn ¼
1

~e
~sfp þ j ~sf ~eAnð Þ ðA1Þ

If we suppose that ~sf ~e ! 1; then the second term is negligible in equation (A1), and we obtain:

J n ¼
~sf

~e
p ðA2Þ

Appendix 2. Jump of 7p
The goal of this appendix is to determine the possible jump of the gradient of p when
the conductance g can be discontinuous. Let r0 be a point on the discontinuity line L of the
conductance. This point is the center of the disc D, which is separated by the line L into two
half discs D1 and D2 (Figure A1). In each disc Di we consider the point ri at the distance 1L.
In the region Di the crack has the conductance gi and in general manner the index iði ¼ 1; 2Þ
denotes the value at the point ri. If the quantity continues, the index 0 designates its value at r0.
Finally, the possible jump of the gradient is noted as

½7p0� ¼
1!0
limð7p2 2 7p1Þ:

From equation (4) and from the continuities of the incident current and the current dipole density,
we obtain the equality:

22j
1!0
lim FP

Z
S

n · Gðr2; rÞpðrÞ dSr 2 FP

Z
S

n · Gðr1; rÞpðrÞ dSr

� �
¼ ðg2 2 g1Þp0 ðA3Þ

Because, we know that p is continuous, the possible difference between both limits in the
integrals of equation (A3) are only due to the presence of hyperstrong singularities in the Green

tensor G; i.e. the electrostatic part G0 (Beltrame and Burais, 2002b). Thus, we can restrict the

integrals of equation (A3) on the domain D with the G0 kernel. After their regularization, they
take the form of Beltrame (2002) and Beltrame and Burais (2002a):

22jFP

Z
D

n · G0ðr i; rÞ · p dSr ¼ aipi þ bi ·7pi þ

Z
D

pð2Þi ðrÞ

Ri

dSr ðA4Þ

where

Ri ¼ kr 2 rik; pð2Þi ðrÞ ¼
pðrÞ2 pi 2 7pi · ðr 2 r iÞ

R2
i

Figure A1.
Scheme for the gradient
jump
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and the coefficients ai and bi depend on the geometry of the disc D and on the point ri. Then, these
coefficients have the same limit when r i ! r0 :

a0 ¼ 2

Z 2p

0

1

R0ðuÞ
du

b0 ¼

Z 2p

0

ln ðR0ðuÞÞurðuÞ du

ðA5Þ

Furthermore, because D is a disc, b0 ¼ 0: Thus, the contribution of first terms in equation (A4)
vanish in equation (A3):

r1!0
lim

Z
D

pð2Þ2 ðrÞ

R2
dSr 2

Z
D

pð2Þ1 ðrÞ

R1
dSr

 !
¼ ðg2 2 g1Þp0 ðA6Þ

When the gradient of p is not continuous, the functions pð2Þi ðrÞ diverges at r0 and the above
integrals are not regular at this point. The inversion of the limit and the sign sum is not allowed.
However, let us suppose that pð2Þi ðrÞ admits a limit for r [ Di; i.e. p admits a second derivate in
each region D1 and D2, then we can write:Z

D

pð2Þ2 ðrÞ

R2
dSr ¼

Z
D2

pð2Þ2 ðrÞ

R2
dSr þ

Z
D1

pð2Þ2 ðrÞ

R2
dSr

The integral on D2 is weakly singular and we can take the limit r2 ! r0 without difficulty.
Because the second member on equation (A6) is independent of D, we take the limit D ! {r0}:
With this second limit, the first integral vanishes. For the second integral we write the Taylor
series expansion of p(r) near r0 in the domain D1:

pð2Þ2 ðrÞ ¼ 2
½7p0� · ðr 2 r0Þ

R2
2

þ
7p2 · ðr2 2 r0Þ

R2
2

þ Oð1Þ ðA7Þ

Similarly, we show for r [ D2 that:

pð2Þ1 ðrÞ ¼ þ
½7p0� · ðr 2 r0Þ

R2
1

þ
7p1 · ðr1 2 r0Þ

R2
1

þ Oð1Þ ðA8Þ

Then, using the reflection symmetry between the regions 1 and 2, we deduce:Z
D

pð2Þ2 ðrÞ

R2
dSr 2

Z
D

pð2Þ1 ðrÞ

R1
dSr ¼ ½7p0�1

Z
D1

1

R3
2

dSr þ

Z
D

Oð1Þ dSr

A classical calculus shows:

1!0
lim 1

Z
D2

1

R3
1

dSr

 !
¼ 2:

Finally, we deduce the jump of the gradient of p:

½7p0� ¼
ðg2 2 g1Þ

2
p0 ðA9Þ

This relation shows that the gradient is discontinuous if and only if the conductance is
discontinuous.
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complicated boundary conditions
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Keywords Boundary-elements methods, Modelling, Electrotechnology

Abstract Certain sophisticated boundary conditions offer powerful modelling features for many
electrotechnical models. Their application, however, wipes out the particular structure of the
system matrices which occurs when structured grids are applied. In this paper, this effect is
prevented by considering the unconstrained system together with additional constraint equations
or by projecting the algebraic system using an oblique or orthogonal projector. The numerical tests
indicate that the efficiency of sparse iterative solvers can be preserved even in the presence of
complicated boundary relations. The described projections are also advantageous for formulations
derived for unstructured grids.

1. Introduction
Structured grids have particular advantages over non-structured meshed. It has been
shown that the discretisation error converges favourably in the case of structure grids
(Monk and Süli, 1994). Models with structured discretisation result in banded system
matrices for which highly optimised iterative solution techniques are developed (Saad,
1996). Recently, some typical disadvantages of structured grids have been alleviated.
The geometrical error due to staircasing can be avoided by applying conformal
discretisation techniques (Krietenstein et al., 1998). The huge number of unknowns
required to resolve local geometrical details by tensor grids can be reduced by local
grid refinement (Podebrad et al., 2003).

As an example of a structured-grid approach, a discretisation of an electrostatic
formulation by the orthogonal finite integration technique (FIT) is considered here.
The treatment of boundary conditions (BCs) as developed here, also carries over to
other formulations and other discretisation techniques at structured grid as well as at
unstructured meshes. The electrostatic partial differential equation

27 · ð17fÞ ¼ r ð1Þ

with 1 the permittivity, f the electric scalar potential and r the charge density, is
discretised using a staggered, dual-orthogonal grid pair, yielding

K

~SM1
~ST|fflfflfflffl{zfflfflfflffl}f ¼ q; ð2Þ
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where ~S is the discrete divergence operator on the dual grid, M1 is the diagonal
permittivity material matrix, f is the vector of nodal voltages and q is the vector of
charges in the dual grid cells (Weiland, 1996). The sparsity pattern of equation (2) in
the case of a cartesian 3D grid, is shown in Figure 1(a).

2. Boundary conditions
BCs for equations (1) and (2) are assigned to surfaces in the computational domain.
The constrained surfaces are not necessarily located at the geometrical borders of
the computational domain, as illustrated, e.g. by a capacitor model where voltages are
applied at the electrodes inside the model. To the electrostatic example, commonly,
Dirichlet BCs f ¼ aðx; y; zÞ at Gd with a(x, y, z) a given potential distribution and
homogeneous Neumann BCs

21
›

›n
f ¼ 0 atGn

with ›=›n the derivative normal to the boundary Gn are applied. BCs affect the primal
unknowns (the voltage f in equation (1)), the dual unknowns (the dielectric
displacement 21ð›=›nÞf for equation (1)) or a combination of both. In this paper, only
BCs applied to the primal unknowns are considered. BCs affecting the dual unknowns,
e.g. non-homogeneous Neumann BCs or mixed BCs, however, can be treated similarly.
No distinction is made between the BCs and interface conditions.

BCs may turn out to be powerful modelling features. Some examples of more
sophisticated BCs are as follows.

(1) Binary BCs. When the geometry, the material distribution and the excitation of
the electrotechnical device feature certain symmetries, only a part of the device
has to be modelled. The potential at a slave boundary Gslv depends on the
potential at a master boundary,

Figure 1.
Sparsity patterns of:

(a) system (2) without
constraints, (b) system
(3) with Dirichlet BCs,

(c) system (4) with binary
BCs, and (d) system with

floating-potential BCs
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fGslv
¼ gfGmst

;

where the conversion factor g is 1 for periodical BCs, 21 for anti-periodic BCs
or e jc when a phase shift c is applied in the case of a time-harmonic model.

(2) Floating-potential BCs. A metallic surface in an electrostatic model can be
modelled by a floating-potential BC f ¼ b at Gfl where b is an unknown
constant.

(3) External circuits. For models, where some parts have to be discretised in order
to resolve complicated geometries and local field effects whereas other parts can
be represented by lumped parameters, a field-circuit coupled formulation is
very effective. The coupling to the external circuit can be treated as a BC to the
field model.

In practice, the configuration of a model may change in time. As a consequence, the
type of BC may change during the time-stepping process. When, for example, a
capacitor plate is disconnected from a voltage source, the Dirichlet BC changes into a
floating-potential BC. The application of more complicated BCs and the treatment of
BCs which change in time may be cumbersome and may result in a substantial
increase of the computation time, especially in the case of structured-grid approaches.
In this paper, techniques are offered for a convenient incorporation of such BCs.

3. Standard application of BCs
Commonly, the BCs are directly inserted in the system. Homogeneous Neumann BCs
are natural BCs and do not require a special treatment. When the subscripts “f” and “d”
distinguish between degrees of freedom and nodal voltages at which a Dirichlet BC
fd ¼ gd is applied, then system (2) with Dirichlet BCs reads:

Kff 0

0 I

" #
ff

fd

" #
¼

qf 2 Kfdgd

gd

" #
: ð3Þ

The block partitioning indicated in equation (3) is commonly not observed since, in
practice, no reordering of the equations is carried out. The second diagonal block in
equation (3) can be omitted, which is not done in practice in order to preserve the
structure of the system matrix. When Dirichlet BCs are inserted by zeroing the
appropriate rows and columns, the original structure of the system matrix is preserved
(Figure 1(b)). This is no longer true when a binary BC fb ¼ gfa is inserted:

Kff Kfa þ gKfb

Kfa þ gKfb Kaa þ g 2Kbb

" #
ff

fa

" #
¼

qf

qa þ gqb

" #
: ð4Þ

Even without reordering and without omitting fb, the system (4) does not longer
reflect the banded structure of the original structured-grid discretisation (Figure 1(c)).
Hence, some of the beneficial numerical properties of structured grid models are lost.
A more general, but also more expensive sparse matrix storage scheme
(e.g. compressed row storage) has to be used. The canonical way of indexing, which
is typical for structured grids, cannot be exploited further in fast matrix-vector
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products or parallellisation. For binary BCs, the banded matrix structure is lost
whereas the bandwidth of the system still remains constant. The incorporation of a
floating-potential BC, however, results in a single, but dense equation per floating
potential (Figure 1(d)). Also when unstructured grids are applied, e.g. in combination
with the finite element method, such a fill-in is undesirable since it diminishes the
efficiency of the matrix-vector product. The loss of the system’s sparsity, is even more
pronounced when more sophisticated BCs such as, e.g. harmonic BCs (De Gersem et al.,
2002) and BCs at surfaces or lines which are not aligned with the grid are applied. The
incorporation of the BCs in the system matrix requires every degree of freedom to be
checked whether it is constrained or not during the matrix assembly. Moreover, the
system matrix has to be recomputed when a change occurs in the model concerning the
BCs. In the following, a general notation covering all mentioned BCs is set-up and three
alternative approaches are proposed, each of them keeping the sparse and structured
system matrix intact.

4. General primal boundary conditions
It is assumed that in the case of several BCs, each BC is applied to a disjunct slave
boundary G

ðpÞ
slv; p ¼ 1; . . .; nbc; of the domain. For each BC, a (possibly empty) master

boundary G
ðpÞ
mst and Dirichlet boundary values g ðpÞðx; y; zÞ are defined. It is further

assumed that G
ðpÞ
mst > G

ðpÞ
slv ¼ Y; for all p. A general, discrete formulation of the BCs

reads:

Bu ¼ CslvQslv 2 DmstQmst ¼ gcns: ð5Þ

The superscripts ( p) are omitted in equation (5) and in all the following formulae when
only one BC is considered. The matrix Cslv is assumed to be square and invertible, Dmst

is a rectangular matrix, Qslv and Qmst are two selectors, i.e. sparse matrices consisting
of entries 1, 21 and 0, and gcns is a vector containing the Dirichlet data. From the
assumptions, it follows that

QðpÞ
mstQ

ðpÞH
slv ¼ 0

QðpÞ
slvQðqÞH

slv ¼ 0

8<
: for all p; q: ð6Þ

The BCs are discretised such that each degree of freedom at GðpÞ
slv is selected only once

and as a consequence, QðpÞ
slvQ

ðpÞH
slv ¼ I: Together with the assumption that CðpÞ

slv is
invertible, this selection procedure leads to a rectangular matrix B which has maximal
rank. The BCs described earlier can be formulated as in equation (5) (Table I).

Boundary condition Cslv Dmst gcns (BBH)21

Dirichlet I 0 gd I
Binary I gI 0 1

1þg2I

Floating potential I En,1 0 I 2 1
nþ1 E

Note: I ij ¼ dij; O ij ¼ 0; E ij ¼ 1 and n is the number of constrained degrees of freedom

Table I.
Matrices representing
BCs are applied to the

primal variables
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5. Saddle-point formulation
The conditions (5) are added to the system with a vector of Lagrange multipliers w:

K BH

B 0

" #
u

w

" #
¼

f

gcns

" #
: ð7Þ

This saddle-point formulation is indefinite even when the original system is definite.
The augmented system has a unique solution because B has maximal rank (Saad, 1996).
The system (7) can be solved by the minimal residual or the quasi-minimal residual
method for symmetric indefinite systems with a diagonal block preconditioner:

~K 0

0 ~S

" #
ð8Þ

where ~K is a preconditioner for K and ~S is an approximation to the Schur complement
system S ¼ BK21BH (Fischer et al., 1998; Saad, 1996). For ~K; any available
preconditioner for the unconstrained system matrix can be applied. The saddle-point
formulation enables, e.g. the selection of a standard (algebraic) multigrid preconditioner
for ~K: The explicit computation of S is not possible in practice. The construction of an
effective preconditioner for S is cumbersome and, in general, requires a spectral
analysis of the type of BC in combination with the field problem. Here, an algebraic
preconditioner ~S ¼ BM21BH ; with M21 a sparse approximation to K21 is used.
Typical choices for M are the diagonal part of K or the preconditioner ~K:

6. Projected systems
The space B is defined as the space of vectors which obey the homogeneous BC, i.e.
B ¼ {u : Bu ¼ 0}: A vector u can be mapped onto B by the operator:

PB ¼ I þ QH
slvC21

slv DmstQmst 2 QH
slvQslv ð9Þ

since all u satisfy BPBu ¼ 0: The operator PB is an oblique projector since PBPB ¼
PB whereas PH

B – PB: The solution of the system with constraints (7) is decomposed
into u ¼ ucns þ uB where ucns obeys the true BC Bucns ¼ gcns and uB [ B: The first
part ucns is chosen as

ucns ¼ QH
slvC

21
slv gcns; ð10Þ

whereas the remaining part uB is found from solving the projected system:

PH
BKPBuB ¼ PH

Bðf 2 KucnsÞ: ð11Þ

It is easily shown that ucnsþuB solves the augmented system (7). The system (11) is
singular but nevertheless consistent since the righthandside is in the range of the
system matrix. For such systems, the preconditioned conjugate gradient algorithm is
known to converge (Kaasschieter, 1988). When explicitly constructed, the singularity is
removed when an identity matrix is inserted for the zero diagonal block, yielding the
system PH

BKPB þ QH
slvQslv which equals the system which is obtained when applying

the BCs in the standard way.
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Owing to the properties (equation (6)), two projectors are commutative ðPðpÞ
B PðqÞ

B ¼
PðqÞ
B PðpÞ

B ; ;p; qÞ and several BCs can be combined into a single projector

PB ¼ <nbc

p¼1P
ðpÞ
B :

The definition of a projector mapping vectors onto B is not unique. It is possible to
derive an orthogonal projector

P’ ¼ I 2 BH ðBBH Þ21B ð12Þ

and solve the projected system

PH
’KP’u’ ¼ PH

’ðf 2 KucnsÞ ð13Þ

instead of equation (11). The solution u ¼ ucns þ u’ equals the solution
u ¼ ucns þ uB and therefore also solves the augmented system (7). Since Cslv is
invertible, the system

BBH ¼ CslvCH
slv þ DmstD

H
mst ð14Þ

is positive definite. Hence, the solution by equation (14) which is required at each
application of P’; can be obtained by using a Cholesky factorisation of equation (14)
or by applying a preconditioned conjugate gradient algorithm. For particular BCs,
an analytical inverse of equation (14) is available (Table I).

Both projection approaches preserve the symmetry and semi-definiteness of the
original system. The factorisations PH

BKPB or PH
’KP’ are not calculated explicitly

since this would lead to unacceptable dense matrices (Figure 2). For particular BCs,
e.g. BCs incorporating fast Fourier transforms, even PB and P’ are commonly not
represented by matrices (De Gersem et al., 2002). Such treatment is only possible when
used within a projected conjugate gradient algorithm as shown in Algorithm 1. The
standard conjugate gradient algorithm only has to be changed at two places: PH has to
accompany the matrix-vector product whereas P has to be applied after

Figure 2.
Sparsity patterns of the
oblique and orthogonal

projectors and the
corresponding projected

systems
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preconditioning. The unconstrained system matrix K, the corresponding
preconditioner ~K and the selected projectors PB and PH

B or P’ and PH
’ are applied

in each iteration step of the modified conjugate gradient algorithm. Both projectors are
computationally inexpensive compared to K since they only adapt unknowns allocated
at the constrained boundaries. Since, in the case of a linear model, the original system
matrix K is left unchanged, the set-up phase of the preconditioner only has to be
carried out once, even when the BCs change during the simulation.

7. Comparison and application
A capacitor model is used to test the numerical performance of the proposed
techniques. A metallic brick, inserted in the dielectricum between the two electrodes, is
modelled by a floating-potential BC. As a preconditioner for K, a standard algebraic

Algorithm 1. Modified conjugate gradient method for solving equations (11) and
(13) with preconditioner ~K and projector P.

r0 ¼ PH ðf 2 KucnsÞ; r21 ¼ 1; p0 ¼ 0;
For k ¼ 1; 2; . . .

zk21 ¼ P ~K21rk21

rk21 ¼ rH
k21zk21

bk21 ¼ rk21=rk22

pk ¼ zk21 þ bk21pk21

qk ¼ PH Kpk

ak ¼
rk21

pH
k

qk

xk ¼ xk21 þ akpk

rk ¼ rk21 2 akqk

stop if convergence
end
u ¼ u þ ucns

Multigrid algorithm is used (Ruge and Stüben 1987). The convergence of the conjugate
gradient algorithm applied to a positive semi-definite symmetric system is
characterized by its spectral condition number, k ¼ lmaxlmin with lmax the largest
and lmin the smallest non-zero eigenvalue of the system matrix. In Table II, the spectral
condition numbers of the system with oblique projection equation (11) and the system
with orthogonal projection (equation (13)) are compared. The system with oblique
projection has a single, large and isolated eigenvalue which is related to the
floating-potential BC. It is observed that the condition number of orthogonally
projected system is comparable to the virtual condition number obtained by discarding
this eigenvalue for the system with oblique projection (Table II). The isolated

# nodes PH
BKPB PH

BKPBð
aÞ PH

’KP’

100 52.7 11.8 28.4
384 225 37.9 40.4
968 587 63.3 75.8
3,610 4054 228 241

Note: a when the isolated eigenvalue related to the floating-potential BC is omitted

Table II.
Condition numbers of the
systems projected by the
oblique projector and
orthogonal projectors
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eigenvalue is directly approximated by a eigenvalue of the Krylov approximation
space underlying the conjugate gradient algorithm. The convergence of the conjugate
gradient with oblique projection is adversely affected by this eigenmode as is observed
in Table III. The augmented system exhibits a worse convergence behaviour compared
to the projected systems which can partially be explained by the inefficient Schur
complement preconditioner. In Table III, the computation times are given in both case
when PH

BKPB and PH
’KP’ are explicitly built, or in the case when they are used in

factorised form together with the modified conjugate gradient algorithm (Algorithm 1).
For this example, with a floating-potential BC, both computation times are comparable
in case of oblique projection. For the larger problems, the explicit construction of
PH
’KP’ is not an option due to the excessive memory requirements. The standard

treatment of BCs corresponds to the system with explicit oblique projection. From
Table III, it can be concluded that for the numerical test model, the modified conjugate
gradient algorithm solving the factorised system with orthogonal projection
outperforms the standard approach significantly (897 s instead of 1,124 s). For BCs
incorporating dense operators such as field-circuit coupling and harmonic BCs, the
proposed approaches are particularly efficient.As a technical example, a surge arrester
is simulated (Clemens et al., 2003) (Figure 3). The Dirichlet BCs corresponding to the

# nodes 968 3,610 14,112 38,988

Saddle-point iterations 14 24 51 87
Time [s] 2.64 7.23 201 1653
Oblique iterations 8 14 35 62
Without time [s] 1.23 4.54 128 1143
With time [s] 1.26 4.34 132 1124
Orthogonal iterations 5 9 31 55
Without time [s] 0.86 2.74 92 897
With time [s] 8.78 36.43 [–] [– ]

Table III.
Iteration numbers and
computation times for

the solution of the
saddle-point formulation

and both projected
formulation with or

without the use of the
explicitly constructed

system matrix

Figure 3.
Geometry and potential

distribution of a surge
arrester
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applied voltages are inserted in the system whereas the floating potentials modelling
the metallic spacers are considered by projecting the electrostatic system of equations.

8. Conclusions
The formulations described above prevent the introduction of non-trivial BCs in
structured system matrices. Structured sparse matrix storage formats, optimal
matrix-vector products and efficient preconditioning techniques originally developed
for models with standard BCs can be maintained. It is shown that the application of
an orthogonal projection onto the solution space satisfying the BCs, leads to the
convergence of the conjugate gradient algorithm which is faster than when the BCs are
considered by oblique projection or incorporated in the system matrix. The treatment
of BCs, presented here, is especially efficient for sophisticated BCs incorporating dense
operators and configurations when the BCs change during simulation.
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Non-nested geometric multigrid
method using consistency error
correction for discrete magnetic

curl-curl formulations
M. Clemens, S. Feigh, M. Wilke and T. Weiland
Institut für Theorie Elektromagnetischer Felder (TEMF),
Technische Universität Darmstadt, Darmstadt, Germany

Keywords Magnetic fields, Simulation, Numerical analysis

Abstract The simulation of magnetic fields with geometric discretization schemes using
magnetic vector potentials involves the solution of very large discrete consistently singular curl-curl
systems of equations. Geometric and algebraic multigrid schemes for their solution require
intergrid transfer operators of restriction and prolongation that achieve the discrete conservation
of integral quantities serving as state-variables of geometric discretization methods. For
non-conservative restriction operations, a consistency error correction operator related to an
algebraic filtering is proposed. Numerical results show the effects of the consistency correction for a
non-nested geometric multigrid method.

1. Introduction
Magnetic fields simulations using a modified magnetic vector potential
A*-formulation

7 £ ðn7 £ A* Þ ¼ JsðtÞ; ð1Þ

where the magnetic flux density is available by B ¼ 7 £ A* and the total current
density J ¼ Js þ Jec contains the source current density Js and the eddy current
density

JecðtÞ ¼ k
›

›t
A* ðtÞ

if eddy current effects in conductive materials ðk – 0Þ are considered. For 3D magnetic
field problems (1) geometric discretization schemes will result in large, sparse, positive
semi-definite systems of equations. For their solution, geometric and algebraic
multigrid schemes have been presented, e.g. in Cingoski et al. (2000), Hiptmair (1999),
Reitzinger and Schöberl (2002), and Weiß and Bı́ro (2002) and were shown to yield
faster methods than the established ICCG schemes. In a recent publication (Feigh et al.,
2003) a geometric multigrid approach has been introduced, in which the construction of
intergrid transfer operators for restriction and prolongation takes into account the
strict separation of metric and non-metric grid information which is the characteristic
for conservative geometric discretization schemes. As will be shown, for the
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non-gauged, consistently singular discrete magnetic curl-curl formulations based on
equation (1) the choice of suitable intergrid transfer operators is not unique and for
non-conservative restriction operators a consistency correction based on the gauging
techniques can be introduced.

2. Discrete magnetic formulations
Consistent geometric discretization schemes for Maxwell’s equations are available
with, e.g., the finite integration technique (FIT) pioneered by Weiland (1977), the lowest
order Whitney-finite-element method (WFEM) by Nédélec (1980) in its interpretation
of Bossavit and Kettunen (1999) and the more recently developed Cell Method (CM)
by Tonti (2001). The matrix formulations, derived from the mapping of Maxwell’s
equations in their integral form onto a dual grid pair {G; ~G}; are dubbed
Maxwell-grid-equations (MGE) following their first formulation in the FIT. In their
context, the discretization of equation (1) with the WFEM in Kameari (1990), FIT in
Clemens and Weiland (1999) and CM in Repetto and Trevisan (2003) yields linear
algebraic systems of equations:

~CMnC
_
a ¼

_

j
_

; ð2Þ

where

_
a ¼

Z
Li

A* · ds

� �
i: Li[G

is the vector of modified magnetic vector potentials integrated along the edges Li [ G
and A ¼ ~CMnC denotes the positive semi-definite curl-curl stiffness matrix. Without
further gauge conditions for

_
a the magneto-quasistatic continuity equation

~S
_

j
_

¼ ~S
_

j
_

s þ ~S
_

j
_

ec ¼ 0

has to hold. In this case, the algebraic system equation (2) is consistently singular,
i.e. the right-hand side vector lies in the range space of the system matrix,
_

j
_

[ Range{A}:
The matrix operators C and ~C correspond to the curl-operators on the primary and

on the dual grid and contain only grid topology information, i.e. they have entries in
{ 2 1; 0;þ1}: The same holds for the discrete divergence-operators S and ~S and the
discrete gradient-operators G and ~G (Tonti, 2001; Weiland, 1977). These matrix
operators mimic the properties of the vector analytical identities:

CG ¼ 0; ~C ~G ¼ 0 $ curl grad ; 0

SC ¼ 0; ~S ~C ¼ 0 $ div curl ; 0

ð3Þ

which are essential for the conservation of energy and cell charges with the MGE.
The assumed duality of the grid doublet {G; ~G}; where each edge of the primary grid is
connected in a one-to-one relation to a dual cell facet and vice versa, results in the
identities:

~G ¼ 2ST; C ¼ ~CT; G ¼ 2 ~ST: ð4Þ
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In the lowest order WFEM a dual grid ~G only appears implicitly as barycentric grid
and the dual grid operators just appear as the transposed matrices of the primal
grid incidence operators following the equation (4) (Bossavit and Kettunen, 1999).

The approximation in this formulation of a discrete electromagnetism and the main
difference between the FIT, the CM and the lowest order WFEM lies in the construction
principles of the discrete constitutive material relations where the grid voltages on the
edges of G are coupled with the flux degrees of freedom located on the facets of the dual
grid ~G and vice versa, i.e.,

_

h ¼ Mn

_

b
_

;
_

j
_

¼ Mk
_
e; ð5Þ

where Mn and Mk are the material matrices for the magnetic reluctivities and
conductivities, respectively.

2.1 Gauging
A regularization, i.e., a gauging of the formulation (2) is possible by adding a discrete
grad-div term to A to yield the matrix:

A ¼ ½ ~CMnC 2 Mk̂GMN
~SMk̂� ð6Þ

where MN is a norm matrix and the artificial conductivity matrix, Mk̂ of the
regularizing term is constructed assuming a small non-physical conductivity kair

in the non-conductive regions (Clemens and Weiland, 2002b). The enforced
relation SMk̂

_
a ¼ 0 then corresponds to the coulomb gauge ðkairð7 · AÞ ¼ 0Þ:

For magnetodynamic formulations, the matrix Mk̂ can also be adapted to take into
account the original material matrix Mk in the matrices

A ¼ aMk þ ~CMnC;

where the scalar a – 0 depends on the chosen formulation (Clemens and Weiland,
1999). The gauge constraint ~SMk̂

_
a ¼ 0 can also be introduced with the operator

PDiv ¼ I 2 GN21 ~SMk̂; ð7Þ

for which PDivA ¼ APT
Div holds and which is a projector with P2

Div ¼ PDiv;
if N ¼ ~SMk̂G: The projected system PT

DivAPDiv
_
a ¼ PT

Div

_

j
_

is regular.

3. Multigrid schemes
A multigrid scheme for the solution of the non-gauged linear schemes arising from
equation (2) generally consists of the following building blocks: starting point is a set of
suitably nested or non-nested grids

Ghi
; i ¼ 0; . . .;Lc;

where each grid resolution level Lhi
is coarser than the level Lhi21

with a stationary
iteration scheme (smoother) on each grid level Lhi

that efficiently eliminates high
frequency error components of the error vector (Trottenberg et al., 2000).

For the intergrid transfer of integral quantities from two grids Ghi
and Ghi21

restriction operators RY
hiþ1

hi
and prolongation operators PY

hi

hiþ1
are required, where the

generic parameter Y [ {N ; ~N;L; ~L;A; ~A;V ; ~V } specifies whether the operator acts on
vectors of integral electromagnetic quantities assigned to nodes N ; ~N; edges L; ~L;
facets A; ~A or volumes V ; ~V of G or ~G:
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For the discrete curl-curl equation (2) restriction operators R ~A
hiþ1

hi
for vectors of dual

facet currents and prolongation operators PL
hi

hiþ1
for vectors of primal edge degrees of

freedom are required, whereas, e.g. for the discrete div-grad system of electrostatics
2 ~SM1GF ¼ q the restriction operators R ~V

hiþ1

hi
for vectors of dual volume charges and

prolongation operators PN
hi

hiþ1
for primal nodal potential vectors F are required ( Feigh

et al., 2003).
Accordingly, the defect (residual) vector corresponding to grid resolution level Lhi

;

_
r_hi

¼
_

j
_

hi
2 ~Chi

Mn;hi
C

_
ahi

ð8Þ

which represents a component vector of currents trough the dual facets ~Aj [ ~G; is
mapped to Lhiþ1

as

_
r_hiþ1

¼ R ~A
hiþ1

hi ;

_
r_hi

using the restriction operator R ~A
hiþ1

hi ;
: The restricted defect vector appears as right-hand

side vector in the defect correction equations:

Ahiþ1

_
yhiþ1

¼
_
r_hiþ1

ð9Þ

featuring the restricted system matrix Ahiþ1
and the error vector

_
yhiþ1

which
corresponds to a component vector of line integrals on Ghiþ1

: A calculated error vector
_
yhiþ1

is then projected onto the finger grid level Lhi
using the prolongation operator

PL
hi

hiþ1
to add the correction

_
yhi

¼
_
yhi

þ PL
hi

hiþ1

_
yhiþ1

:

The coarse grid system matrices are commonly achieved from a Galerkin projection
with:

Ahiþ1
¼ R ~A

hiþ1

hi
Ahi

PL
hi

hiþ1
: ð10Þ

Symmetry can be maintained in equation (10) if the dual grid restriction operators for
discrete curl-curl and grad-div systems, respectively, correspond to the equations:

R ~A
hiþ1

hi
¼ PL

hi

hiþ1

� �T
; R ~V

hiþ1

hi
¼ PN

hi

hiþ1

� �T
: ð11Þ

For this reason, often only the construction of prolongation operators is considered and
the restriction operation is derived according to equation (11).

Assuming that the defect vector in equation (8) fulfills the consistency condition
~Shi

_
r_hi

¼ 0; from the relation of the restriction operators (Figure 1):

~Shiþ1
R ~A

hiþ1

hi
¼ R ~V

hiþ1

hi

~Shi
ð12Þ

also ~Shiþ1

_
r_hiþ1

¼ 0 follows. With the duality in equation (4) and the relations in equation
(11) the condition (12) is identical to

Ghi
PN

hi

hiþ1
¼ PL

hi

hiþ1
Ghiþ1

ð13Þ

for the vectors of nodal potentials Fhiþ1
proposed (Reitzinger and Schöberl, 2002). This

condition is related to the fact that the discrete gradients of the nodal potential vector

COMPEL
23,4

916



GF form the nullspace of the discrete curl-operator on all grid resolution levels Lhi

according to the exactness relation (3) in simple topologies.
The operator PN

hi

hiþ1
proposed by Reitzinger and Schöberl (2002) prolongates an

Lhi
-coarse grid nodal potential value in a piecewise constant identity mapping to all

adjacent fine grid nodes and fulfills conditions (12) and (13). In Bochev et al. (2003) for a
prolongation PL

hi

hiþ1
to commutate according to (13) a prolongation improved by a

build-in smoothing step has been defined with:

P̂L

hi

hiþ1
¼ Ihi

2 vD21
CC;hi

~Chi
Mn;hi

Chi

h i
PL

hi

hiþ1
; ð14Þ

where Ihi
is the unit matrix of grid level Lhi

; v is a build-in relaxation factor and DCC;hi

is the main diagonal of the curl-curl matrix. This refined prolongation is shown in
Bochev et al. (2003) to exhibit better convergence properties than the one in Reitzinger
and Schöberl (2002). By the identities in equation (3) this prolongation operator (14)
also fulfils equation (12).

In the context of the MGE of the FIT, restriction and prolongation operators are
formulated by Feigh et al. (2003) based on a linear interpolation of the integral
state-variables assigned to the geometric objects, such that these intergrid operators
commutate with all grid incidence operators as shown in Figure 2, whereas equation
(14) is constructed to fulfill only the including conditions (12) and (13).

The commutative diagram in Figure 2 for the grid transfer operators and the grid
incidence matrices allows, e.g. the following exchange of the operators in the discrete
curl-curl matrix:

Ahiþ1
¼ R ~A

hiþ1

hi

~Chi
Mn;hi

Chi

� 	
PL

hi

hiþ1
;

¼ ~Chiþ1
R ~L

hiþ1

hi
Mn;hi

PA
hi

hiþ1
Chiþ1

;
ð15Þ

where intrinsically a new coarse grid reluctivity matrix,

MGalerkin
n;hiþ1

¼ R ~L
hiþ1

hi
Mn;hi

PA
hi

hiþ1
ð16Þ

is defined algebraically. Thus, the intergrid operators with the commutative property
restrict a Galerkin projection to the material matrices, such that the coarse grid system
matrix again is a consistent representation of problem (1), where all the metric
information and the material distribution of the coarse grid level is located in a discrete
material matrix. The relations (15) and (16) immediately suggest to exchange the
Galerkin projected material matrix with a material matrix originally constructed for
the coarse grid, i.e.,

Figure 1.
Restriction operators
R ~A

hiþ1

hi
on non-nested

dual grids ~Ghi
and ~Ghiþ1

(2D presentation)

Geometric
multigrid

method
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Ahiþ1
¼ ~Chiþ1

Mn;hiþ1
Chiþ1

: ð17Þ

In the WFEM and the CM this approach may result in a considerably less accurate
coarse grid representation. In the recently proposed Conformal FIT multigrid scheme
in Feigh et al. (2003), however, the CFIT material matrix MCFIT

n;hiþ1
takes the curved

material boundaries inside cell volumes of G exactly into account (Clemens and
Weiland, 2002a). These material matrices are either reconstructed using the exact
geometry of each grid level using a CAD-kernel or by using the metric information of
MCFIT

n;h0
on the finest mesh level Lh0

to algebraically construct the material matrices for
coarser grid resolutions hiþ1; i $ 0; with, e.g.

MACFIT
n;hiþ1

¼
Yi

j¼0

RD ~L

hjþ1

hj

 !
D ~L;h0

D �n;h0

Yi

j¼0

RDA

hjþ1

hj
DL;h0

 !21

; ð18Þ

where the left operators RD ~L

hjþ1

hj
and RDA

hjþ1

hj
correspond to the restriction matrices

R ~L

hjþ1

hj
and R ~A

hjþ1

hj
; acting on diagonal matrices. The original CFIT material matrices

and the Algebraic CFIT matrices maintain their diagonal structure for dual-orthogonal
grids, whereas the Galerkin projected material matrices in equation (15) become more
condensed for coarser grids, which impedes efficient smoothing (Feigh et al., 2003).

3.1 Restriction with consistency error correction
When using the CFIT-MG like construction of the system matrices in equation (17) on
all coarser grids, the restriction operator R ~A

hiþ1

hi
is required only for the restriction of

the defect vectors of dual facet currents. Then, the restriction has to follow condition
(12) to maintain that for consistent defect vectors with ~Shi

_
r_hi

¼ 0 the relation
~Shiþ1

R ~A
hiþ1

hi

_
r_hi

¼ 0 holds, i.e., the coarsened grid system in equation (9) is consistently

Figure 2.
Commutative diagram for
linear restriction and
prolongation operators
RY

hiþ1

hi
and PY

hi

hiþ1
in the

discrete De Rham complex
of the primal
fine-/coarse-grid pair Ghi

and Ghiþ1
: Diagrams for

dual grids ~Ghi
and ~Ghiþ1

can be derived
analogously
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singular. If, e.g., a non-conservative restriction scheme based on a “nearest-neighbor”
projection is used such that ~Shiþ1

R ~A
hiþ1

hi

_
r_hi

– 0 holds, i.e., the restricted right-hand side
vector is no longer in the range of the consistent curl-curl-matrix,

R ~A
hiþ1

hi

_
r_hi

� Range{ ~Chi
Mn;hi

C}:

As a consequence, system (9) has no exact solution and only least-square
approximations are feasible (Kameari, 2003). The discrete consistency error of dual
charges can then be eliminated by indirectly enforcing a discrete coulomb gauge
SMk̂

_
a ¼ 0 for equation (9) with the definition of the projector PDiv in equation (7) with

the choice N ¼ ~SMk̂G: The system,

~Chiþ1
Mn;hiþ1

Chiþ1

_
y ¼ PT

DivR ~A
hiþ1

hi

_
r_hi

ð19Þ

with the projected right-hand side vector is again consistently singular and can be
solved again. The corrected restriction scheme is still non-conservative: the coarse grid
problems no longer correspond physically to the original fine grid problem on the
coarser grid levels. Thus, the convergence rates of the overall multigrid scheme are
expected not to reach those of MG schemes with conservative intergrid operators.

4. Numerical results
Linear magnetostatic c-magnet problems are calculated using a non-nested geometric
CFIT-MG scheme following equation (17) (Feigh et al., 2003). In Figure 3 the CFIT-MG

Figure 3.
Comparison of the

efficiency of SSOR-CG and
the CFIT-MG scheme for

the solution of the
systems (2) from a

CFIT-discretization of a
c-magnet test problem

Geometric
multigrid

method
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scheme using conservative intergrid operators shows an improved asymptotic
complexity behavior when compared to a SSOR-preconditioned conjugate gradient
solver.

The CFIT-MG method in Figure 4 shows the convergence for the scheme with
non-conservative “nearest-neighbor” restrictions, although the internal systems are
inconsistent and no convergence should be expected. The consistency correction
operator in equation (19) eliminates erroneous charges due to the non-conservative
restriction of the defect vectors as shown in Figure 5 and thus yields consistently
singular systems at each grid level that are guaranteed to have solutions. The CFIT-MG
method in Figure 4 with the consistency corrected non-conservative “nearest-neighbor”
restrictions is still not as fast as the scheme with the conservative linear operators of
Feigh et al. (2003).

5. Conclusion
The magnetic vector potential formulation discretized with geometric discretization
methods as the FIT, the lowest order WFEM or the CM requires the solution of large
linear algebraic systems of equations. A theoretical framework of multigrid methods
amenable to this task was presented focusing on algebraic properties of the intergrid
transfer operators. The relations of these operators to the metric-free incidence
matrices were shown to be responsible for the conservation of discrete integral
quantities such as fluxes and charges. For non-conservative schemes, possible
sources of consistency errors were shown to occur and a correction scheme using a
gauge projection operator was shown to restore the consistency of the singular
formulation.

Figure 4.
Comparison of the
convergence history of
geometric CFIT-multigrid
schemes using different
defect restriction methods
for a three-dimensional
c-magnet test
configuration: (a) the
charge conservative
restriction, (b) the
“nearest-neighbor”
restriction without
consistency correction,
and (c) the
“nearest-neighbor”
restriction with
consistency correction
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Escola Politécnica da Universidade de São Paulo – Lmag/PEA/USP,

São Paulo, Brazil

Keywords Waves, Optimization techniques, Numerical analysis

Abstract This paper presents the mathematical basis, and some results, concerning the
application of the Haar’s Wavelets as the expansion function in the method of moments. Some
computational optimization techniques are used, and their main aspects are stressed in the paper.
As an example, the surface charge density on a finite and thin plane plate calculation is presented,
in which the main computational performance aspects are evaluated.

1. Formulation
Regarding the formulation, in order to illustrate the proposed methodology, the main
theoretical aspects of the method of moments and of the Haar’s wavelets are presented
here. For simplification, two-dimensional applications are considered.

1.1 Method of moments
Although the method of moments is a well-known numerical method, and the complete
description and details of this method have already been presented in many papers,
in order to guide the reader through the overall method explanation, a brief summary
is shown here. In a simplified way, it can be mentioned that the basis of the method
of moments is the application of approximation functions, like the following one
(Harrington, 1968).

f ðxÞ ¼
n

X
anLgn ð1Þ

In the aforementioned expression, an is the unknown coefficients; gn is the expansion
function, e.g. the pulse or the Haar’s wavelets, and “L” a mathematical operator. When
the inner product, using a weighed function “Wm”, is carried out, it will result:

n

X
ankLgn;Wml ¼ k f ;Wml para m ¼ 1; 2. . .N ð2Þ

The previous expression can be represented in a matrix form by ½A�½a� ¼ ½B�; where
[a ] is the unknown approximated solution coefficients column vector, and the matrices
[A] and [B] are given by:
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½A� ¼

kLg1;W 1l . . . kLgn;W 1l

kLg1;W 2l . . . kLgn;W 2l

kLg1;Wnl . . . kLgn;Wnl

2
664

3
775; ½B� ¼

k f ;W 1l

k f ;W 2l

k f ;Wnl

2
664

3
775 ð3Þ

If a square plane plate is considered as an example, we should remember that the
potential in a finite and very thin plane plate can be evaluated by (Balanis, 1990):

V ðx; y; z ¼ 0Þ ¼
1

4p1

Z a

2a

dx 0

Z b

2b

dy 0 rðx 0; y 0Þ

½ðx 2 x 0Þ2 þ ðy 2 y 0Þ2�1=2
ð4Þ

Thus, after applying the method of the moments, knowing the function of the
approximated solution f(x, y), the expansion function g(x, y) and the weighed function
W(x, y), the potential in a square plane plate will be estimated by the inner product of
these functions:

V ðx; yÞ ¼ kg;W ; f l
1

R
¼

Z a

2a

gðx; yÞW ðx; yÞf ðx; yÞ

Rðx; yÞ
dx ð5Þ

where

Rðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 2 x 0Þ2 þ ðy 2 y 0Þ2

q
ð6Þ

Dividing the plate in equal segments and applying the weighed function as being the
Dirac delta function, we had that Wm ¼ dðx 2 xmÞdðy 2 ymÞ; being the inner product
in the point given by:

V ðx;y; z ¼ 0Þ ¼ kWm; f ;Lgl

¼ d ðx2 xmÞd ðy2 ymÞ
1

4p1

Z a

2a

dx 0

Z b

2b

dy 0

PN
n¼1

angnðx
0;y 0Þ

½ðxm 2 x 0Þ2 þðym 2 y 0Þ2�1=2

ð7Þ

Assuming the charges placed in the center of each sub division in relation to each axes,
substituting the values of x and y by the distance of the charge position to the point
P(xm, ym), we will have an integral that is only function of x0 and y0. For a fixed potential
V, the equation can be represented, using the matrix notation, by ½Vm� ¼ ½Zmn�½an�; in
which Zmn is defined by:

Zmn ¼

Z a

2a

dx 0

Z b

2b

gnðx
0; y 0Þ

4p1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm 2 x 0Þ2 þ ðym 2 y 0Þ2

p dy 0 ð8Þ

1.2 The Haar’s wavelets
It was earlier mentioned that many functions can be used as the expansion function.
Among them, the pulse function, the truncate cosine function and the wavelets can be
mentioned. Herein, the general aspects of the wavelets are shown. Thus, after applying
the method of the moments, and considering the Haar’s wavelets, a function f(x, y) can
be approximated by (Newland, 1993):
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f ðx; yÞ ¼
X1

k¼21

ckfðx; yÞ þ
X1

j¼21

X1
k¼21

dj;k f P ðx; yÞcj;kðx; yÞ ð9Þ

In this equation “j” and “k” are the resolution and the translation levels, respectively.
Moreover, once the Haar’s wavelets, and the so-called mother function (10) and scale

function father (11) are applied, the formulation for two-dimensional applications will
result in a product combination of equations (12) and (13), given by equation (14):

c
ðH Þ
j;k ðxÞ ¼ 2j=2c ð2jx 2 kÞ j; k [ Z ð10Þ

f ðH ÞðxÞ ¼
1 0 # x , 0:5

0 for other intervals

(
ð11Þ

c
ðH Þ
j;k ðxÞ ¼ ½fðxÞcðxÞcð2xÞcð2x 2 1Þ. . .cð2jx 2 kÞ� ð12Þ

c
ðH Þ
j;k ð yÞ ¼ bfðyÞcðyÞcð2yÞcð2y 2 1Þ. . .cð2jy 2 kÞc ð13Þ

{cðH Þ
j;k ðxÞ; ð yÞ} ¼ fðxÞfðyÞ; fðxÞcðyÞ; . . .; cð2x 2 1Þcð2y 2 1Þ ð14Þ

As an illustration, Figure 1 shows the Haar’s function regarding two dimensions and
one level of resolution, for a point P(xm, ym). On the other hand, if the potential in a finite
and very thin plane plate is considered as an application, it can be evaluated by:

Figure 1.
Representation of the

Haar’s function for
two-dimensions and one

level of resolution

Wavelet’s
application
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V ðx; yÞ4p1 ¼ ajbj

Z a

2a

Z b

2b

fðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxm 2 x 0Þ2 þ ðym 2 y 0Þ2

p dx dy

þ
X1

j¼21

X1
k¼21

aj;kbj;k

Z a

2a

Z b

2b

c
ðH Þ
j;k ðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxm 2 x 0Þ2 þ ðym 2 y 0Þ2
p dx dy

ð15Þ

Based on the previous formulation, it should be observed that they are indexed by two
parameters, “j” and “k”, allowing us to vary the precision of the results through these
levels of resolution. Concerning the application of the Haar’s wavelets, the main aspects
are related to the resulting scattered matrices and null coefficients, an interesting
property to be considered regarding the computational aspects (Aboufadel and
Schlicker, 1999). Those can be mentioned as the main characteristic of this
methodology.

In order to briefly illustrate those aspects, one can remember that the equation to
determinate the coefficients of the approximation function can be written as:

½Zmn� £ ½r� ¼ ½V � ð16Þ

where Zmn is a square matrix that is not necessarily a scattered one, since it depends on
the expansion function that was chosen.

Thus, taking advantages of the fact that the Haar’s matrix is a scattered matrix,
applying the matrix algebra, it will result (Wagner and Chew, 1995):

½Z 0
mn� £ ½r 0� ¼ ½V 0� ð17Þ

else,

½Z 0
mn� ¼ ½H � ½Zmn� ½H

T�

½r 0� ¼ ½H T�21 ½r� ½V 0� ¼ ½H �½V �

ð18Þ

Consequently, we will obtain:

½H �½Zmn�½H
T�½H T�21½r� ¼ ½H �½V � ð19Þ

Thus, after applying such an approach, we got a symmetrical matrix. Moreover, due
to the properties of Haar’s function a number of “near” null matrix elements were
obtained.

The used approach is based on the assumption of a threshold level. This level
corresponds to a percentage of the difference between the maximum positive value and
the minimum negative one. Once it is adopted, the matrix elements, inferior to this
number, will be assumed as a null one. This approach will help to get an additional
computing time reduction.

2. Applications and discussion
After applying the aforementioned formulation, some results were obtained. For
example, Figure 2 shows the surface charge density in a square plate ð1:0 m £ 1:0 mÞ;
submitted to a potential of 1.0 V. In this case, it was adopted that 16 subdivisions for
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each of the axes, and the level 5 of resolution was applied to the Wavelets. Concerning
the characteristic of the method, it should be emphasized that the application of the
Haar’s wavelets originates scattered matrices. Thus, we will have null coefficients that
can result in a computing time reduction.

Table I shows the comparative results regarding the computing time values
(Patterson and Hennessy, 2001; Stallings, 2002), function of the adopted axe division
number, with or without applying the null value detection routine. A 800 MHz PC was
used.

As estimated, when the null value detection routine is carried out, it will get an
average 40 per cent computing time reduction. Figure 3 shows the comparative
computing time (s), with and without using the null value detection routine.

Figures 4-6 show the Zmn
0 matrix configuration for the threshold equal to 0.01, 0.02,

and 0.05 per cent, respectively. The dark part is for the non-null values.
Table II shows the computing time, when the threshold level, and the axe

subdivision numbers are considered.
Figure 7 shows the error variation for the surface charge density, considering a

square plane plate, and 16-axe subdivisions, as a function of the selected threshold.
Moreover, it should be mentioned that the Cholesky’s decomposition method was

also implemented (Datta, 1995). Figure 8 shows the matrix configuration after applying
it, assuming a threshold level equal to 0.01 per cent. In this case, an approximate
increase of 64 per cent was obtained in the null value element of the matrix.

Regarding the computational performance, the average computing time decreased
from 0.21 to 0.02 s, for 16-axe subdivision, and a reduction time from 11.49 to 0.351 s.

Divisions Computing time (s) Difference

Plane plate Without With (per cent)

4 £ 4 0.321 0.25 22.12
8 £ 8 7.931 5.488 30.80
16 £ 16 451.960 222.60 50.75
32 £ 32 27273.738 11994.487 56.02

Table I.
Computing time (s)
function of the axe

subdivisions and of the
null value detection use

Figure 2.
The surface charge

density on the plane plate
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3. Conclusion
This paper features the theoretical aspects and applications concerning wavelets
applied to the method of the moments. Although some simple applications on
electrostatics were presented, the proposed methodology can be applied to more
complex problems. Based on the results presented in the paper, we verified that
the difference in the charge density value for a square plane plate is lower than
0.025 per cent, when the Haar’s wavelets is used as an expansion function in the method
of the moments, instead of the pulse function.

Figure 3.
The computing time (s) as
a function of the
subdivision axe number

Figure 4.
Value of the threshold
of 0.01 per cent
(23,528 non-zero elements)
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It should also be mentioned that the advantage of adopting the Haar’s function to
the reduction of the non-null matrix elements results in the improvement of its
computational performance. After adopting the null-value detection routine, an average
of 40 per cent computing time reduction was achieved. Moreover, the Cholesky’s

Figure 5.
Value of the threshold of

0.02 per cent (19,068
non-zero elements)

Figure 6.
Value of the threshold of

0.05 per cent (12,232
non-zero elements)

Threshold levels (per cent)
Subdivision 0.00001 0.01 0.05 0.1

16 £ 16 0.27 0.21 0.16 0.12
32 £ 32 25.486 11.49 4.516 2.073

Table II.
Computing time (s) as a

function of the axe
subdivisions and of the
adopted threshold level
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decomposition method were implemented, getting an average of 64 per cent computing
time reduction.
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Abstract This paper investigates new technological devices to be utilised in future optical
communications, by means of variational method (FEM) and multipole scattering approach
(Rayleigh method). This last one provides interesting asymptotic results in the long-wavelength
limit. The so-called photonic crystal fibres (PCF) possess radically different guiding properties due
to photonic band gap guidance: removing a hole within a macro-cell leads to a defect state within
the gap. In the case of multi-core PCF, the localised modes start talking to each other which possibly
leads to a new generation of multiplexer/demultiplexers.

1. Introduction
Nanostructured materials containing ordered arrays of cylindrical holes pave the
way of an optoelectronics revolution, doing for light what silicon did for electrons.
The microelectronics revolution was based on the elaborate control of electric currents
achieved with semiconductors as silicon. That control depends on a phenomenon called
the band gap, i.e. a range of energies in which electrons are blocked from travelling
through the semiconductor. By analogy with semiconductors, physicist have produced
materials with a photonic band gap – a range of wavelengths of light that is blocked
by the material – by structuring the material in carefully designed patterns at the
nanoscopic-size scale. These so-called photonic crystals (PC) act as semiconductors for
light and promise innumerable technological applications. Such structures can be
stretched along the third dimension, forming a new kind of optical fibres, christened
“photonic crystal fibres” (PCF). Conventional optical fibres have a high refractive index
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at their core, which confines light by total internal reflection. Philip St J. Russell of the
University of Bath in England demonstrated in 1999 how to make photonic band-gap
fibres (Knight et al., 1999). In one version, light travels along a central hole in the fibre,
confined there by the two-dimensional band gap of a surrounding periodic cladding.
More optical power can be sent through such a central void than through glass,
enabling greater information-carrying capacity, perhaps 100 times that of conventional
telecommunications fibres. Specialty fibres have advanced the most as commercial
photonic band-gap products. Two companies, one of them being based in UK
(“www.blazephotonics.com”) and led by Philip St J. Russell, have already distributed
sample quantities and will soon begin volume production of PCF. We present analysis
of electromagnetic waves propagating through such doubly periodic array of
cylindrical channels in oblique incidence. We use Floquet-Bloch quasi-periodicity
conditions to take into account the periodicity of the problem (Nicolet et al., 2004).
Although one may argue that the PCF reportedly have a finite size in real world
(Knight et al., 1999), this model enables us to construct dispersion curves for the
corresponding periodic structure. We exhibit band gaps in conical incidence and study
localised modes associated with a defect in a macrocell.

2. Rayleigh method
2.1 Set up of the spectral problem
2.1.1 Maxwell’s equations at work. We consider a periodic heterogeneous lossless
medium. This micro-structure is characterised by its permittivity 1 ¼ 1r10 (10 is the
permittivity of vacuum) and its permeability m ¼ mrm0 (m0 is the permeability of
vacuum). We assume an implicit time dependence exp ð2ivtÞ of the electric field
Eðx; y; zÞ and the magnetic field Hðx; y; zÞ, which are therefore solutions of the time
harmonic Maxwell’s equations (in the sense of distributions in R3):

curl E ¼ ivm0mrH; div ð1rEÞ ¼ 0

curl H ¼ 2iv101rE; div ðmrHÞ ¼ 0

(
ð1Þ

Since we are studying propagation of modes in a periodic medium, the well posedness
of this spectral problem is ensured by the Floquet-Bloch quasi-periodicity conditions
which hold on the boundary of a basic cell (provided that 1r and mr are real functions
with strictly positive lower and upper bounds).

In the case of propagating waves in conical incidence in a medium invariant along
the z-axis, V ( V denoting either E or H ) is sought in the form:

V ¼ Vðr;FÞ eig z; ð2Þ

where g is the (strictly positive) propagation constant and r and F denote the
radial and angular variables of V which is associated with one of the basic cells
(Figure 1), which we denote as Y ¼ ½0; d� £ ½0; d� (d is the pitch of the square array).

From now on, we will study piecewise-constant permittivity and permeability: we
restrict our analysis to the important case of a periodic assembly of infinite conducting
cylindrical inclusions of circular cross-section C (Knight et al., 1999). Using the vector
Helmholtz decomposition

curl ðcurl VÞ ¼ 2DV þ grad ðdiv VÞ; ð3Þ
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we find that in the medium between the metallic inclusions, the electric and magnetic
field satisfies the vector Helmholtz equation

ðDþ k 2ÞV ¼ 0; ð4Þ

where the spectral parameter k denotes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 2101rm0mr

p
; 1r and mr being, respectively,

the relative permittivity and permeability in the matrix.
Because the rods are infinitely extended in the z-direction, the x and y components of

the E and H fields can be reconstructed from their z-components, via the equations

E t ¼
1

101rm0mrv 2 2 g 2
ðig gradtE z 2 ivmrez £ gradt H zÞ; ð5Þ

H t ¼
1

101rm0mrv 2 2 g 2
ðig gradtH z þ iv1rez £ gradt E zÞ: ð6Þ

It should be noted that in the subsequent analysis we retain the z-dependence of
the fields.

The mathematical model of infinite conducting inclusions amounts to assuming
that the tangential part of the electric field n £ E be vanishing on their boundary,
unlike the tangential part of the magnetic field n £ H which involves the (unknown)
current. If we write the tangent vector at any given point on the inclusion surface ›C as
et and the normal vector as n then

n £ Ej›C ¼ E zet þ ez £
ig

1rmrv 2 2 g 2

›E z

›t
2

ivmr

1rmrv 2 2 g2

›H z

›n

� �� �����
›C

¼ 0: ð7Þ

2.1.2 Conical mounting for metallic cylinders: miracle making. Noting that et and ez are
perpendicular, we can express the boundary conditions as a set of restrictions on the
z-components of the fields. These are

Figure 1.
Physical space and
reciprocal space
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E zj›C ¼ 0; ð8Þ

ig

1rmrv 2 2 g2

›E z

›t
2

ivmr

1rmrv 2 2 g 2

›H z

›n

� �����
›C

¼ 0: ð9Þ

When g ¼ 0, it follows straightforwardly from (9) that

›H z

›n

����
›C

¼ 0: ð10Þ

So that we can split the problem into two fundamental polarisations in the sense that
every field can be expressed as two decoupled fields, namely a T.E. field for which Hz is
the solution of

ðDþ k 2ÞHz ¼ 0; outside the metal; ð11Þ

›Hz

›n

����
›C

¼ 0; on the boundary of each cylinder; ð12Þ

and a T.M. field for which Ez is the solution of

ðDþ k 2ÞEz ¼ 0; outside the metal; ð13Þ

Ezj›C ¼ 0; on the boundary of each cylinder: ð14Þ

When g . 0, the boundary conditions in equations (8) and (10) still hold, which is one
of the peculiarities shared by the model of infinitely conducting metallic cylinders. The
fact that the conical mounting does not mix the polarisations is certainly not trivial
(and actually not true for dielectric cylinders). Hence, we thought that this remarkable
fact deserves a little digression from the main stream of the paper.

If 0 , g ! 1, we can assume that E z and H z are represented in the form

E zðv; gÞ ¼ E0
zðvÞ þ gE1

zðvÞ þ Oðg 2Þ; ð15Þ

H zðv; gÞ ¼ H 0
zðvÞ þ gH 1

zðvÞ þ Oðg 2Þ: ð16Þ

If we neglect all terms of order O(g 2), the boundary condition in equation (9) implies
that equation (10) is first order in g.

Now, if g @ 1, E z and H z are represented in the form

E zðv; gÞ ¼ g21E1
zðvÞ þ g22E2

zðvÞ þ Oðg23Þ; ð17Þ

H zðv; gÞ ¼ g21H 1
zðvÞ þ g22H 2

zðvÞ þ Oðg23Þ: ð18Þ

If we neglect all terms of order O(g 23), the boundary condition in equation (9)
implies

›E z

›t

����
›C

¼ 0
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to order g22 which brings a trivial result. What saves us is the boundary condition
in equation (8) which in any case (for every g . 0) ensures us that equation (9)
leads to equation (10)!

But that is not all, we should also note that equations (8) and (10) hold both for
( E z, H z) and (Ez,Hz) due to the definition (2) and the fact that n is perpendicular to the
z-axis.

2.1.2 Recast of the problem into longitudinal components. Finally, the boundary
value problem splits in two fundamental polarisations, namely T.E. polarisation

ðDþ k2
’ÞHz ¼ 0; outside the metal; ð19Þ

›Hz

›n

����
›C

¼ 0; on the boundary of each cylinder ð20Þ

and T.M. polarisation

ðDþ k2
’ÞEz ¼ 0; outside the metal; ð21Þ

Ezj›C ¼ 0; on the boundary of each cylinder ð22Þ

with k’ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v 2101rm0mr 2 g 2

p
. It should be noted that v should be greater than the

so-called cut-off frequency vc ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0mr

p
to ensure a real (positive) transverse

wave-number k’ .
2.1.3 The Bloch conditions: from boundary value to spectral problems. For the

spectral problem to be completely specified, we further assume that the longitudinal
part Vz of the vector field V satisfies an appropriate quasi-periodicity condition known
as the Floquet-Bloch condition

Vðr þ RpÞ ¼ VðrÞeik·Rp ; ð23Þ

where k is known as the Bloch wave-vector and Rp¼ p1a
1þp2a

2 is the vector attached
to the nodes p¼ ( p1, p2)[ Z2 of the lattice of translations vectors a1 and a2, which
form the basis for the lattice as a whole (Figure 1).

2.1.4 An orphan: the TEM case. Most of the studies dealing with the infinite array
of metallic cylinders light-heartedly skip the important issue of the most peculiar class
of so-called transverse electric-magnetic waves, except in the noticeable work of
McPhedran et al. (1997). These modes are of the form (2) but otherwise they should also
fullfil the restrictive condition

Ez ¼ 0; Hz ¼ 0; ð24Þ

within the PCF. Let us check whether or not such a constraint is achievable.
Firstly, it follows from either equation (5) or (6) together with equation (24) that the

propagation constant g has to be equal to the wavenumber k ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101rm0mr

p
if we

want non zero Et or Ht. Hence, in the transverse case ðg ¼ 0Þ TEM modes would only
stand a chance to exist in the static limit.

Secondly, plugging E ¼ Et eig z and H ¼ Hte
ig z in equation (1), we find

curl E ¼ ðcurl Et þ ig ez £ EtÞe
ig z ¼ ivm0mrHt ð25Þ

The second equality in equation (25) holds true if and only if curl Et ¼ 0 in the sense of
distributions, since both Ht and ez £ Et are orthogonal to ez unlike curl Et which is
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colinear to ez. Owing to equation (20), (22) and (24) Etj›C is also null. Hence, Et is
irrotational in classical sense and it therefore derives from a potential WTE:

Et ¼ 2grad W TE; in Yn �C ð26Þ

A similar reasoning can be led for Ht but we notice that only its normal derivative will
vanish of the boundary C and therefore it is only irrotational in distributional sense (due
to the existence of a current n £ Ht on ›C ). Now, from equations (1) and (26), we have

DW TE ¼ divðgrad W TEÞ ¼ 2div Et ¼ 0; in Yn �C; ð27Þ

both in distributional and classical sense (due to Dirichlet boundary conditions on ›C ).
At this stage, we remark that Yn �C is a not simply connected set (it would be simply

connected if we would consider an array of dielectric cylinders). Therefore, equation
(27) does not imply that the (quasi-periodic) potential WTE be constant over the basic
cell (which would lead to Et ¼ 0). It is important to note also that the potential WTE is
bound to take a value Wi

TE on the boundary ›C in the ith basic cell within the array
which is distinct from its value Wj

TE on the boundary ›C in the jth basic cell if i – j.
We are therefore in presence of a quasi-periodic potential solution of a problem of
electrostatic type. The analysis of the quasi-static limit led by Poulton et al. (2001)
reveals the following relationships between on the one hand, the dynamic field
quantities Hz and our electrostatic potential WTE:

Hz , 1 þ k0;’W TE; ð28Þ

where

k0;’ , v 101rm0mr 2
1

2

g

v

	 
2
� �

is the quasi-static wavenumber.
On the other hand, in the T.M. case it is shown in Poulton et al. (2001) that

Ez , 1 þ k0;’W TM; ð29Þ

where

DW TM ¼ 0; in Yn �C; ð30Þ

which is supplied with Bloch conditions on opposite sides of Y and some Neumann
boundary condition ›W TM=›n ¼ 0 on the boundary ›C.

Remarkedly, the electrostatic solutions WTE,x and WTM, y (repectively corresponding
to fields directed along the x- and y-axes) form a Cauchy-Riemann pair and are related by
Keller’s theorem (Keller, 1964) according to grad W TE;x ¼ 2ez £ grad½Rðp=2ÞW TM; y�,
where R(w) denotes a rotation by an angle w. From this, it can be deduced that, in the
quasi-static limit, the transverse field modes Et and Ht (which are respectively
proportional to ez £ gradW TE and gradWTM) form a linearly independent (orthogonal)
pair of TEM modes, identical up to a rotation through angle p/2.

Actually, for a square array of circular metallic inclusions, it can be shown that the
potential WTE solution of equation (27) can be expressed as

W TE ¼ A ln ðr=rcÞ þ B; ð31Þ
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where A and B are some integration constants deduced from the boundary conditions
(quasi-periodicity of W on opposite sides of the basic cell Y as well as vanishing normal
derivative on the boundary r ¼ rc).

2.2 Multipole expansions and boundary conditions
We expand the longitudinal fields Ez and Hz in terms of Bessel functions between the
inclusions:

jz ¼
Xþ1

m¼21

ajm Jmðk’rÞeimF þ bjmYmðk’rÞ
h i

eimF; ;j [ {E;H}; ð32Þ

where r and F denote the radial and angular variables of Ez and Hz.
We derive from equations (20), (22) and (32) that the multipole coefficients ajm and bjm

are linked by the boundary conditions

aE
m ¼ 2

Ymðk’rcÞ

Jmðk’rcÞ
bE

m; aH
m ¼ 2

Y 0
mðk’rcÞ

J 0mðk’rcÞ
bH

m: ð33Þ

2.3 Quasi-periodic Green’s function and Lattice sums
Another relation between the multipole coefficients can be gained by examining the
structure of the lattice. This amounts to taking into account the quasi-periodicity of
the transverse field (electric or magnetic), as stated by equation (23). Therefore, we
introduce a two-dimensional quasi-periodic Green’s function Gk which satisfies

ðDþ k2
’ÞGkðr; r

0Þ ¼
p[Z2

X
d ðr 2 r0 2 RpÞe

ik·Rp ; ð34Þ

where the sum stretches over the entire array of nodes p (locations of the centers of the
cavities).

Using the Graf’s addition theorem for Bessel functions, one can derive the
representation of the Green’s function Gk as a Neumann series within the central unit
cell (Movchan et al., 2002)

Gkðr; r
0Þ ¼

1

4
Y 0ðk’jr 2 r0jÞ þ

1

4

Xþ1

l¼21

SY
l ðk’;kÞJ lðk’jr 2 r0jÞe2ilu; ð35Þ

where the dynamic lattice sums SY
l are defined by

SY
l ðk’;kÞ ¼

p[Z2nð0;0Þ

X
Ylðk’jRpjÞe

iFp lþik·Rp ; ð36Þ

and Fp ¼ argðRpÞ, u ¼ argðr 2 r0Þ. As this series is slowly convergent, we shall use
the following formula, derived by McPhedran and Dawes (1992) to calculate the lattice
sums
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SY
l ðk’;kÞJ lþqðk’zÞ ¼ 2dl0 Yqðk’zÞ þ

1

p

Xq

n¼1

ðq 2 nÞ!

ðn 2 1Þ!

2

k’z

� �q22nþ2
" #

2
4i l

A
p[Z2

X k’

jQpj

� �q
J lþqðjQpjzÞe

ilup

jQpj
2
2 ðk’Þ

2
; ð37Þ

where A ¼ ja1 £ a2j denotes the area of the unit cell. For analytic purposes, it is
convenient to use the values p ¼ 0, z ¼

ffiffiffiffi
A

p
¼ d (remember that d is the pitch of the

direct array). The above formula is characterized by faster convergence via integration
with respect to z. The integer parameter q gives the number of times the convergence
of the lattice sums has been accelerated through integration and is thus called
convergence acceleration index. The reciprocal unit cell is defined by the vectors[1]

a1 ¼ 2p
a2 £ ez

A
; a2 ¼ 2p

ez £ a1

A
; ð38Þ

with the reciprocal lattice vectors

Qp ¼ p1a
1 þ p2a

2 þ k; up ¼ argðQpÞ: ð39Þ

The lattice sums satisfy the identity

SY
2lðk’;kÞ ¼ SY

l ðk’;kÞ; ð40Þ

and hence it is sufficient to calculate them only for nonnegative values of l (here · denotes
the complex conjugate quantity).

2.4 Rayleigh identities and Rayleigh system
In equating the nonsingular field in the central unit cell with the superposed effect of all
the other (singular) sources in the array, we obtain the following Rayleigh identities
(Guenneau et al., 2003) for every j in {E, K},

ajl ¼
Xþ1

m¼21

ð21ÞlþmSY
m2l ðk’;kÞb

j
m; ð41Þ

where the lattice sums SY
m2lðk’;kÞ provide the contribution of the lattice (Guenneau

et al., 2003). These two sets of equations are linked via boundary conditions equation
(33) expressed in terms of multipoles and lead to the Rayleigh system (Guenneau et al.,
2003)

M jj
l ðk’Þb

j
l þ

Xþ1

m¼21

ð21ÞlþmSY
m2lðk’;kÞb

j
m ¼ 0; ;j [ {E;H}; ð42Þ

where MEE
l ¼ Ylðk’rcÞ=J lðk’rcÞ and MHH

l ¼ Y 0
lðk’rcÞ=J 0lðk’rcÞ.

This algebraic system can be written as RB ¼ ðM þ SÞB where Rðk’;kÞ is the
so-called Rayleigh matrix. It possesses standard properties of the Rayleigh system: it
neatly separates the effect of the boundary conditions (the M jj

l Þ from that of the
geometry of the lattice (the SY

l Þ, so that quite wide-ranging results can be gained
without specifying particular compositions of voids. It is also remarked that the
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coefficients M jj
l are real which makes R Hermitian due to equation (40). This is

consistant with the fact that we consider lossless media.

2.5 Normalisation of the Rayleigh system
From the definition of the boundary terms M jj

n , one can show that, as n !þ1,

M jj
n ¼ O G2ðnÞn

1

2
k’rc

� �22n
 !

ð43Þ

Similarly, one can show that, for the lattice sums,

SY
l ðk’;kÞ ¼ O GðlÞ

1

2
k’d

� �2l
 !

; as l !þ1: ð44Þ

This causes numerical difficulties when

k’d

2
! 1;

since the off-diagonal terms increase extremely rapidly with index l:

zjl þ
Xþ1

m¼21

Djj
lmzjm ¼ 0; ;j [ {E;H}; ð45Þ

where

zjl ¼ bjl

ffiffiffiffiffiffiffiffiffiffiffi
jM jj

l j

q
and

Djj
lm ¼

sign
�
M jj

l

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M jj

l

��� ��� ��Mm

��r ð21ÞlþmSY
m2lðk’;kÞ for j [ {E;H}:

Using asymptotics of Bessel functions for large l and a fixed m, we get:

Djj
lm ¼ O

ðk’rcÞ
lffiffiffiffiffiffiffiffiffiffiffi

G2ðlÞl
p Gðl 2 mÞ

ðk’dÞl

 !
¼ O

1ffiffi
l

p
rc

d

	 
lðl 2 mÞ!

l!

� �
: ð46Þ

Therefore, if m is fixed as l !þ1,

Djj
lm ¼ O

l 2mffiffi
l

p
rc

d

	 
l
� �

: ð47Þ

With l and m playing a symmetric role, it is a straightforward matter to show that,
if l is fixed as m !þ1,

Djj
lm ¼ O

m2lffiffiffiffi
m

p
rc

d

	 
m
� �

: ð48Þ
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Owing to this normalisation, the elements in the Rayleigh system decay exponentially
away from the main diagonal, giving rise to higher multipole coefficients that decay
similarly quickly. The frequency of vibration v can be calculated for any given value
of the Bloch vector k by annulling the determinant of the system det(R(k’, k)) at
fixed conical parameter g. In this way one can specify the dispersion relation for
high frequencies by taking some high-order truncations (Guenneau et al., 2003).
Also, in the dilute composite limit, one can truncate the system to the dipole order
ðl;m [ {21; 0; 1}Þ to get some effective properties in the long-wavelength limit.

3. Finite element method
3.1 Operator formulation
The following operators are defined:

gradg w ðx; yÞ ¼ grad ðwðx; yÞeigzÞe2igz

curlg V ðx; yÞ ¼ curl ðVðx; yÞeigzÞe2igz

divg Vðx; yÞ ¼ div ðVðx; yÞeigzÞe2igz

8>>><
>>>:

ð49Þ

Their domains are classes of (k,Y)-periodic (i.e. satisfying equation (23)) square
integrable functions with values in C (for gradg) or C3 (for divg and curlg) which we
denote as L2

]ðk;Y Þ and ½L2
]ðk;Y Þ�3.

We say that the couple (Ek,Hk) associated with the Bloch vector k is an
electromagnetic Bloch wave if (Ek,Hk) verifies equation (1) and is of the form specified
by equation (2) with

ðg;v;kÞ [ Rþ £ Rþ £ R2

ðEk;HkÞ – ð0;0Þ

Ek;Hk [ ½L2
]ðk;Y Þ�3:

8>>><
>>>:

ð50Þ

The solutions (Ek, Hk) of the spectral problem defined by equations (1), (2) and (23)
hence satisfy

curlg Hk ¼ 2iv101rðx; yÞEk

curlg Ek ¼ ivm0mrðx; yÞHk

(
ð51Þ

with 1r and mr defined as in equation (1). Note that curlg gradgw ¼ 0 for smooth scalar
fields w and divg curlg U ¼ 0 for smooth vector fields U.

Since we consider a (perfectly conducting) metallic inclusion C in the basic cell Y,
the presence of metallic walls introduces unknown currents equal to the tangential
component of the magnetic field. Therefore, we choose an electric field formulation to
deal with simple boundary conditions (the tangential component of the electric field is
null on metallic walls). Eliminating the magnetic field from equation (51), one finds:

1

1r
curlg

1

mr
curlg Ek ¼ k2

0Ek ð52Þ

where k2
0 ¼ 1omov

2 ¼ v2=c 2, c is the celerity of light in vacuum.
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3.2 Weak formulation
The numerical formulation is given by the following residue (Guenneau et al., 2002)

Rðg; Ek;E
0
kÞ ¼

Z
Yn �C

m21
r ðcurlt Et;k · curlt E0

t;k þ gradt El;k · gradt E 0
l;k

2 i gEt;k · gradt E 0
l;k þ ig gradt El;k · E0

t;k þ g 2 Et;k · E0
t;kÞdx dy

2 k2
0

Z
Yn �C

1rðEt;k · E0
t;k þ El;k E 0

l;kÞdx dy:

ð53Þ

The weight vector field E0
k is chosen in the same discrete Hilbert space as the unknown

field Ek, i.e. a space with finite dimension equal to the number of numerical parameters
to be determined. This formulation involves both a transverse field Et,k in the section of
the guide and a longitudinal field El,k along its axis such that:

Ek ¼ Et;k þ El;kez: ð54Þ

3.3 Discrete weak form
The section of the guide is meshed with triangles and Whitney finite elements
(Bossavit, 1990) are used, i.e. edge elements for the transverse field and node elements
for the longitudinal field:

Ek ¼

Et;k ¼
edges i

P
aiw

e
i ðx; yÞ

El;k ¼
nodes j

P
gjw

n
j ðx; yÞ

8>><
>>: ð55Þ

where ai denotes the line integral of the transverse component Et,k on the edges, and gj

denotes the line integral of the longitudinal component El,k along one unit of length of
the axis of the guide (what is equivalent to a nodal value). Besides, wn

j ðx; yÞ ¼ ljðx; yÞ
and we

i ðx; yÞ ¼ lkðx; yÞgrad llðx; yÞ2 llðx; yÞgrad lkðx; yÞ (where lj is the barycentric
coordinate of node j and the edge i has nodes k and l as extremities) are, respectively,
the basis functions of Whitney 1-forms (edge element discrete space W 1) and Whitney
0-forms (nodal element discrete space W 0).

Moreover, the use of the Whitney elements solves the spurious mode problem in a
way similar to the one of the cavities (Bossavit, 1990).

As the eigenvalue problem involves, on the one side, k2
0 only and, on the other side,

both g and g 2, a more classical (though generalized) eigenvalue problem is obtained by
fixing g [ Rþ (rather than k2

0) for a given Bloch vector k and looking for ðk2
0;EkÞ

satisfying the discrete spectral problem.

3.4 Implementation of Bloch conditions
In order to find Bloch modes with the finite element method, some changes have to be
performed with respect to classical boundary value problems that will be named Bloch
conditions (Nicolet et al., 2004). To avoid tedious notations, a simpler case is considered
here: a scalar field Uk(x, y) (time and z dependence are irrelevant here and there is no
particular problem to extend this method to vector quantities and edge elements) on the
square cell Y with Bloch conditions relating the left and the right side. The set of nodes
is separated in three subsets: the nodes on the left side, i.e. with x ¼ 0, corresponding to
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the column array of unknowns ul, the nodes on the right side, i.e. with x ¼ 1,
corresponding to the column array of unknowns ur, and the internal nodes, i.e. with
x [ ½0; 1�, corresponding to the column array of unknowns u. One has the following
structure for the matrix problem (corresponding in fact to natural boundary conditions,
i.e. Neumann homogeneous boundary conditions):

A

u

ul

ur

0
BB@

1
CCA ¼ b ð56Þ

where A is the (square Hermitian) matrix of the system and b the second member
column array. The solution to be approximated by the numerical method is a
Bloch function Ukðx; yÞ ¼ U ðx; yÞeiðkxxþkyyÞ with U Y-periodic and in particular
U ðx þ 1; yÞ ¼ U ðx; yÞ. Therefore, the relation between the left and the right side is:

Ukð1; yÞ ¼ U ð1; yÞeiðkxþkyyÞ ¼ Ukð0; yÞe
ikx ) ur ¼ ule

ikx ð57Þ

Therefore, the set of unknowns can be expressed in function of the reduced set u and ul

due to:

u

ul

ur

0
BB@

1
CCA ¼ P

u

ul

 !
with P ¼

1 0

0 1

0 1eikx

0
BB@

1
CCA ð58Þ

where 1 and 0 are identity and null matrices, respectively, with suitable dimensions.
The finite element equations related to the eliminated nodes have now to be taken into
account. Owing to periodicity of the structure, the element on the left of the right side
corresponds to elements on the left of the left side. Therefore their contributions
(i.e. equations corresponding to ur) must be added to the equations corresponding to ul

with the correct phase factor, i.e. e2 ikx what amounts to multiplying the system matrix
by P*, i.e. the Hermitian conjugate of P. Finally, the linear system to be solved is:

P*AP
u

ul

 !
¼ P*b ð59Þ

where it is worth noting that the system matrix is still Hermitian what is important for
numerical computation. Now a generalized eigenvalue problem (with natural boundary
conditions) Au ¼ lBu is transformed to a Bloch mode problem according to
P*APu0 ¼ lP*BPu0. Such problems involving large sparse Hermitian matrices can
be solved using Lanczos algorithm that gives the largest eigenvalues (Nicolet et al.,
2004). Physically we are in fact interested in the smallest eigenvalues and therefore
A21, the inverse of A, instead of A itself must be used in the iterations. Of course, the
inverse is never computed explicitly but the matrix-vector products are replaced by
system solutions due to a GMRES method. It is therefore obvious that the numerical
efficiency of the process relies strongly on Krylov subspace techniques and the Arnoldi
iteration algorithm (Nicolet et al., 2004). The practical implementation of the model has
been performed thanks to the GetDP software (Dular et al., 1998) (Figure 2).
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4. Numerical results
In this section, we provide some numerical illustration for an array of channels filled
with perfect metal (any metal in the microwave regime) which are drilled within a silica
matrix in a densely packed configuration. We obtain some band diagrams exhibiting a
nice photonic bandgap, i.e. a range of frequencies where no electromagnetic wave
propagates (Figures 3 and 4). When we remove one channel, we observe some localised
signal sitting right in the middle of the gap (its normalised frequency vd=c ¼ 7:95 is
independent of the Bloch vector k). The practical application lies in futurist optical
fibres (Knight et al., 1999; Zolla et al., 2004).

4.1 Effective properties and singular perturbation
On the dispersion diagrams of Figures 3 and 4, we can only see one acoustic band.
The reason for this is that if we consider k’rc ! 1 in equation (42), the relationship
between k’ and k is supplied by

M jj
0 ðk’rcÞ þ SY

l ðk’;kÞ ¼ 0; ;j [ {E;H}: ð60Þ

This equation provides the first perturbation away from the plane-wave state. It
appears to hold true even for shorter wavelengths in comparison with the array
spacing d, as long as k’rc ! 1. Now, for long-wavelengths, it is possible to obtain
analytic expressions for the lattice sums SY

l in equation (37). We find that when
k’ ! jQmj, equation (60) can be approximated as (Guenneau et al., 2003)

M jj
0 ðjQmjrcÞ2

2

p
ln

jkj

2

� �
þ x1

� �
2 4 x2 þ

ln ð2dÞ

p

� �

2
4

d 2

1

jQmj
2
2 k2

’ jQnj¼jQmj

X
1 þ OðkQmj2k’jÞ ¼ 0;

ð61Þ

where x1.20.318895593, x2 is the Euler’s constant 0.557215665 and Qm is defined by
equation (39). Hence, the boundary term MHH

0 in equation (61) becomes

Figure 2.
The Bloch theorem and
virtual periodic meshing
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MHH
0 ¼

Y 0
0ðjQmjrcÞ

J 00ðjQmjrcÞ
¼ 2

1

p

2

jQmjrc

� �2

þOððjQmjrcÞ
0Þ; ð62Þ

and so this term (corresponding to TE polarised waves) dominates the perturbation in
equation (61). It corresponds in fact to the first dispersion curve.

On the dispersion diagram, we can only see one acoustic band. The reason for this is
that if we consider k’rc ! 1 in equation (61), the boundary term MEE

0 becomes

MEE
0 ¼

Y 0ðjQmjrcÞ

J 0ðjQmjrcÞ
¼ 2

2

p
ðlnðjQmjrcÞ þ x2Þ þ OððjQmjrcÞ

2Þ; ð63Þ

and so this term (corresponding to TM polarised waves) is of the same order as the
contribution of lattice sums in equation (61). In this case, equation (61) becomes

k 2 2 k2
’ ¼

2p

d 2
ln

rc

d
þ C

	 
21

; ð64Þ

where C ¼ 22px1 2 2 ln 2 . 1:31053292. This corresponds in fact to the fourth
dispersion curve. Also, we note that the acoustic curve v(k) is quadratic in the
neighbourhood of the origin in Figure 4 which is not the case in Figure 3. This can be
also classified as a singular perturbation induced by the conical parameter g: For small
g, the asymptotics of eigenfrequencies take the following form:

Figure 3.
The propagation constant
is g ¼ 0mm21 (transverse
case). Band diagram for a
periodic array of cavities

arranged on a square
lattice (radius 0.35mm,

center spacing d¼1mm) in
a matrix of silica (1r¼ 1.5)
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vðk; gÞ , v0ðkÞ þ gv1ðk=gÞ; ð65Þ

so that the increment of the frequency may be small, whereas the (transverse) group
velocity ›v/›k may change by a finite increment. This characterises the presence
of noncommuting limit, namely between v! 0 and g! 0, which is discussed in
(Poulton et al., 2004).

In transverse incidence (g ¼ 0) and for reasons of symmetry, it appears that in the
neighbourhood of the origin k ¼ ð0; 0Þ, the frequency v is written as per:

v ¼ vjkj þ Oðkx; kyÞ; ð66Þ

and the effective index is given by N eff ¼ c=v (see straight line going to the origin in
Figure 3). But in oblique incidence (g . 0), it is clear from Figure 4 that the effective
refractive index N eff is no longer given by the variation of group velocity at the origin.
It is in fact connected to the notion of effective mass (second order derivatives)
(Guenneau et al., 2003).

4.2 Photonic band gaps for square periodic arrays
The complete gap occurs only for TE waves (since there is no acoustic band for TM
waves). The second dispersion curve corresponds indeed to TE waves and it is called
optical band. We observe that the group velocity can be negative in the neighbouhrood
of G. This can be associated to a negative effective refractive index which possibly
leads to newly discovered left-handed-materials (Smith et al., 2004).

Figure 4.
The propagation constant
is g ¼ 7mm21 (conical
case). Band diagram for a
periodic array of cavities
arranged on a square
lattice (radius 0.35mm,
center spacing d¼1mm) in
a matrix of silica (1r¼ 1.5)
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4.3 Localised modes associated with periodic multiple defects
As a simple illustration, we start with the removal of the central channel within a
supercell containing 7 £ 7 voids of the micro-structured fibre. We set some Bloch
conditions on opposite sides of this supercell, thereby assuming some infinite extent of
the PCF in the transverse plane (x2y). We then observe in Figure 5 a new eigenstate

Figure 5.
Models for periodic

structures with defects
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associated with an eigenfrequency sitting within the band gap of Figure 4. We note
that this corresponds to a flat narrow pass-band on a corresponding dispersion
diagram (not depicted since the number of dispersion curves increases dramatically
with the size of the supercell) as checked numerically, this pass-band does not depend
on the orientation of the Bloch vector within the first Brillouin zone GMK. The reader
may argue that the Bloch conditions assumed on the opposite sides of the basic cell will
influence the result. Even though our modelling does not contain within it all the
physics at work (for instance, we cannot compute the leakage of the localised mode),
we observe that removing any of the channels within the macrocell does not affect
the eigenfrequency and associated eigenstate: this is a numerical evidence of the
well-behaved convergence of the finite element algorithm for Bloch conditions.

We now move to the richer case of multiple defects within the macrocell. Provided
that the cores are close enough, they start to talk to each other (Figure 5). This
phenomenon is fairly well known in the field of optical waveguides (Guenneau et al.,
2001), but its extension to microstructured fibres is new and presents exciting
applications in multiplexing/demultiplexing as was foreseen in the transverse case by
Centeno et al. (1999).

5. Conclusion
In this paper, we have presented two algorithms by which one can construct some
band diagrams associated with conical Bloch waves in arrays of metallic cylinders.
The first one, the so-called Rayleigh method, is an analytic algorithm well suited for
various asymptotic purposes such as the long-wavelength limit (homogenisation) and
leads to an infinite algebraic system which is typically truncated as a 22 £ 22 matrix.
The second one, the so-called finite element method, leads to large sparse systems, but
can tackle problems of more complex geometries (such as arrays of cylinders of
arbitrary cross-section or models for periodic structures with defects as in Figure 5).

Note

1. We note that the dot product k · Rp in equations (23), (34) and (36) is nothing else but a
duality product, hence we adopt covariant/contravariant notations for the lattice vectors in
physical and reciprocal spaces.
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The Newton-Raphson method for
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Abstract This paper discusses the use of a complex-valued reluctivity tensor for modelling
non-linear, anisotropic and hysteretic materials in a time-harmonic finite element context. It is
shown how these problems can be solved by the Newton-Raphson method. The method is applied
for the simulation of the magnetic field distribution in a three-phase transformer.

1. Time-harmonic finite element method
The time-harmonic finite element method allows to simulate the steady-state
behaviour of devices that are excited by sinusoidally varying currents. The governing
equation of a two-dimensional time-harmonic problem is

7 · ðn 07 ~AÞ2 jsv ~A ¼ 2~J; ð1Þ

where

n 0 ¼
nyy 2nyx

2nxy nxx

 !
ð2Þ

is a matrix containing the entries of the reluctivity tensor n [Am/Vs], s the electric
conductivity [A/Vm], v the pulsation frequency [rad/s], ~A the z-component of the
magnetic vector potential [Vs/m] and ~J the z-component of the applied current sources
[A/m2]. ~A and ~J are phasors and are represented by complex numbers. The
instantaneous value of the vector potential in time-domain is determined by

~AðtÞ ¼ R{ ~Aejvt}: ð3Þ

The piecewise continuous approximation of the magnetic vector potential over the
finite element mesh writes

~Aðx; yÞ ¼
Xn

i¼1

~Aiwiðx; yÞ; ð4Þ
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where n is the number of nodes in the mesh and wi is the shape function in node i of
the mesh. After applying the Galerkin approach, one finally ends up with a system of
algebraic equations:

~rð ~AÞ ¼ ðKð ~AÞ þ jLÞ ~A 2 ~T ¼ 0; ð5Þ

where ~A is the solution vector, ~T the source vector, ~r the residual vector, K the stiffness
matrix and L the eddy-current matrix. The non-linearity of the problem is due to the

dependency of K on ~A, via the reluctivity tensor.

2. Reluctivity tensor
In a time-harmonic context, non-linear, anisotropic and hysteretic behaviour
can be modelled by a complex-valued reluctivity tensor (Birkfeld, 1997, 1998). This
complex-valued tensor representation is a generalisation of the complex-valued
reluctivity scalar used in Lederer and Kost (1998) and Niemenmaa (1988). If n is
considered in its principal coordinate system (Nye, 1985), it is a diagonal tensor whose
entries equal nrd and ntd, respectively[1]. Hence:

~Hrd

~Htd

0
@

1
A ¼

nrd 0

0 ntd

 ! ~Brd

~Btd

0
@

1
A; ð6Þ

with
!
~H ¼ ~Hrd~erd þ ~Htd~etd the field strength [A/m] and

!
~B ¼ ~Brd~erd þ ~Btd~etd the flux

density [Vs/m2]. Since the x and y components of
!
~H and

!
~B are phasors, ~HðtÞ and ~BðtÞ

describe an elliptical locus in space.

2.1 Polar tensor representation
By representing the tensor entries in a polar form, i.e.

nrd ¼ jnrdje
jard ; ð7Þ

ntd ¼ jntdje
jatd ; ð8Þ

it follows that

n ¼
jnrdj 0

0 jntdj

 !
e jard 0

0 e jatd

 !
: ð9Þ

The moduli jnrdj and jntdj basically determine the anisotropic behaviour, while the
arguments ard and atd yield a phase lag between the field and the flux density.
To illustrate the meaning of this, a rotating flux density, e.g.

~Brd ¼ B; ð10Þ

~Btd ¼ 2jB; ð11Þ

is applied to a linear anisotropic material for which jntdj ¼ 4jnrdj: The field strength
locus,
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~HðtÞ ¼ R{n
!
~Bejvt}; ð12Þ

is shown in Figure 1. The instantaneous geometric angle d(t) between ~HðtÞ and ~BðtÞ is
shown in Figure 2. These figures reveal some important properties:

. if ard ¼ atd; the ~H-locus is not oblique (Figure 1);

. in general, ~B and ~H are not parallel to each other, except when ~B aligns with one
of the principal axes of the ~H-locus (Figure 1);

. if ard ¼ atd ¼ a; the direction of ~H depends on the value of a (Figure 1); and

. if ard ¼ atd ¼ 0; the average value of d(t) is zero. The total loss

Ph ¼

Z 2p

vt¼0

~H d~B ¼

Z 2p

vt¼0

Hx dBx þ

Z 2p

vt¼0

Hy dBy ð13Þ

is zero as well (Figure 2).

Figure 2.
Geometrical angle (d(t)

between ~HðtÞ and ~BðtÞ;
when applying a circular
~B-locus to a linear
anisotropic material,
represented by a complex
reluctivity tensor for
which jntdj¼4jnrdj,
ard¼atd¼08 (solid),
ard¼atd¼308
(dashdotted), ard¼458 and
atd¼308 (dashed)

Figure 1.
Elliptical ~H-loci obtained
when applying a circular
~B-locus to a linear
anisotropic material,
represented by a complex
reluctivity tensor for
which jntdj¼4 jnrdj,
ard¼atd¼08 (solid),
ard¼atd¼308
(dashdotted), ard¼458 and
atd¼308 (dashed)
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. If ard ¼ atd [�08; 1808½ or ard – atd [ ½08; 1808�; the average value of d(t) is
positive, resulting in a positive total loss (Figure 2).

As a consequence, a complex-valued reluctivity tensor allows to model the losses
caused by simultaneously alternating and rotating fluxes, though in a simplified way
(Birkfeld, 1998). If jnrdj ¼ jntdj and ard ¼ atd [ ½08; 1808�; the reluctivity tensor may
be replaced by a complex-valued scalar reluctivity, which models a simplified form of
alternating hysteresis (Lederer and Kost, 1998).

2.2 Cartesian tensor representation
By representing the reluctivity tensor components in cartesian form, i.e.

nrd ¼ n re
rd þ jn im

rd ; ð14Þ

ntd ¼ n re
td þ jn im

td ; ð15Þ

it follows that:

n ¼
n re

rd 0

0 n re
td

0
@

1
Aþ j

n im
rd 0

0 n im
td

0
@

1
A: ð16Þ

Since K depends on n, the entries of K may be complex-valued. By splitting up K in its
real and imaginary part,

K ¼ Kre þ jKim; ð17Þ

the system of equation (5) becomes

~rð ~AÞ ¼ ½Kreð ~AÞ þ jðL þ Kimð ~AÞÞ� ~A 2 ~T ¼ 0: ð18Þ

2.3 Material data
Birkfeld (1998), described how n re

rd; n im
rd ; n re

td and n im
td can be determined from

measurements in the rolling and transverse direction of grain-oriented silicon steels, by
processing the measured signals in frequency domain. Obviously, the results depend
on the shape of the exciting ~B-locus.

For a circular ~B-locus, these reluctivity tensor components are shown in Figure 3 as
a function of the magnitude of ~B: The measurements have been performed at 50 Hz on
a square grain-oriented silicon steel sheet M111-35N of 80 mm length and 0.35 mm
thickness (Beckley, 2000). For ease of notation, nre;im

rd denotes both n re
rd and n im

rd : The
solid and dashed lines correspond to the real and imaginary tensor component,
respectively.

The polar equivalent of this figure, describing the dependency of jnrdj; jntdj; ard and

atd on j~Bjmax; is shown in Figure 4. Here, the solid and dashed lines correspond to the
rolling and transverse direction, respectively. The moduli in this figure reveal the
obvious result that the rolling direction is easier to magnetise than the transverse
direction. Moreover, the elliptic ~H-locus has its principal axes close to the rolling and
transverse direction, because ard < atd: The fact that they both differ from zero
implies that the material is not lossless.
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3. Newton-Raphson method
It is possible to solve equation (18) numerically by successive substitution. The
conjugate orthogonal conjugate gradient (COCG) method can be used for this purpose,
since the complex-valued system is symmetric. Simulation time can be significantly
decreased by considering derivative information of the reluctivity tensor entries as
well, to yield the Newton-Raphson method. However, this requires a special treatment.
The basic idea behind the Newton-Raphson algorithm is to set the first-order Taylor
series expansion of the residual ~rð ~AÞ to zero. However, when working with complex

Figure 3.
Reluctivity tensor entries
n re

rd (top, solid),
n im

rd (top, dashed),
n re

td (bottom, solid) and
n im

td (bottom, dashed) as a
function of the magnitude
B of a circular flux density
(Birkfeld, 1998)

Figure 4.
Reluctivity tensor entries
jnrdj (top, solid), jntdj (top,
dashed), ard (bottom, solid)
and atd (bottom, dashed)
as a function of the
magnitude B of a circular
flux density
(Birkfeld, 1998)
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variables, the Taylor series expansion is only defined if the residual is an analytic
function of ~A; i.e. the Cauchy-Riemann condition

›~r

› ~A
re

k

¼
1

j

›~r

› ~A
im

k

ð19Þ

must be fulfilled. Unfortunately, in non-linear magnetodynamic problems, this is
generally not the case (Lederer et al., 1996).

Consequently, in order to obtain a Newton-Raphson scheme, one has to derive the
Jacobian from the equivalent real representation of ~r; defined by

r ¼
~rre

~rim

 !
: ð20Þ

By setting

D ¼
Kre 2ðL þ KimÞ

L þ Kim Kre

 !
; ð21Þ

A ¼

~Are

~Aim

 !
; ð22Þ

T ¼

~Tre

~Tim

 !
; ð23Þ

it follows that

rðAÞ ¼ DðAÞA 2 T: ð24Þ

The ð2n £ 2nÞ matrix D has real-valued entries, but it is non-symmetric. The ð2n £ 1Þ
vectors r, A and T have real-valued entries. Setting the first-order Taylor expansion of
r to zero,

rðA þ dÞ < rðAÞ þ JðAÞd ¼ 0; ð25Þ

with J the Jacobian of r, yields a direction r along which a line search is performed in
order to determine a new approximation. Elaborating J on the level of a single linear
finite element yields

JðeÞ ¼ DðeÞ þ MðeÞ þ NðeÞ; ð26Þ

with

MðeÞ ¼
2

D
Q ðeÞ

~Are;ðeÞ

~Aim;ðeÞ

 !
~Are;ðeÞ

~Aim;ðeÞ

 !T

PðeÞ ð27Þ
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NðeÞ ¼
2

D
RðeÞ

2 ~A im;ðeÞ

~Are;ðeÞ

 !
~Are;ðeÞ

~Aim;ðeÞ

 !T

PðeÞ ð28Þ

PðeÞ
ij ¼

1

4D
bi ci

	 
 bj

cj

 !
; ð29Þ

QðeÞ
ij ¼

1

4D
bi ci

	 
 dn 0re

dB2

bj

cj

 !
; ð30Þ

RðeÞ
ij ¼

1

4D
bi ci

	 
 dn 0im

dB 2

bj

cj

 !
; ð31Þ

where D is the area of the element, b1 ¼ y2 2 y3; . . .; c1 ¼ x3 2 x2; . . .: Due to the
non-symmetric structure of the Jacobian, the conjugate gradient (CG) method cannot be
used to solve equation (25). The quasi minimal residual (QMR) method is appropriate
here. Equating M (e) and N (e) in equation (26) to zero, i.e. omitting all non-linear
contributions to the Jacobian, gives rise to the Picard or successive substitution method
discussed earlier.

4. Simulation of a three-phase transformer
The 3-phase transformer shown in Figure 5 is now simulated using the complex-valued
tensor data shown in Figure 3. The phase of the currents in the coils is 2858, 358 and
1558, respectively. For three different flux density levels, Figure 6 compares the
convergence of the proposed Newton-Raphson method (solid) with the convergence
of the Picard or successive substitution method (dashdotted). Obviously, the
Newton-Raphson method converges much faster than the Picard method, except if the
applied currents are small. This is caused by the negative derivatives of the reluctivity
tensor entries at low flux densities shown in Figure 3 (Rayleigh region).

Figure 5.
Flux line distributions
obtained with the
complex-valued
time-harmonic
anisotropy model
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Figure 5 shows the flux line distribution. Since the material model used for this
simulation assumes that all ~B-loci are circular, it is expected that the obtained solution
may differ significantly from reality. Data are required for elliptic ~B-loci as well, in
order to perform more accurate simulation. The use of a complex reluctivity tensor
allows to visualise the loss density in each finite element. This is shown in Figure 7 for
the region around the T-joint. This figure clearly indicates the increased losses due to
rotational magnetisation at the top of the vertical limb.

5. Conclusions
The use of a complex-valued reluctivity tensor allows to model non-linear, anisotropic
and hysteretic materials in a time-harmonic context. The equations for solving such
type of problems with the Newton-Raphson method are elaborated. The convergence

Figure 7.
Loss density distribution

in the T-joint of the middle
limb

Figure 6.
Norm of the residual as a
function of time, for three

different flux density
levels, when simulating

with the Newton-Raphson
method (solid) or the

Picard method
(dashdotted)

The
Newton-Raphson

method
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rate for the Newton-Raphson method is significantly higher than for the successive
substitution method, provided the simulation is performed outside the Rayleigh region
of the material characteristics.

Note

1. “rd” and “td”, respectively, stand for “rolling” and “transverse direction”, since these
directions generally coincide with the principal tensor axes.
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Abstract This paper deals with the magnetic vector and scalar potential formulation for
two-dimensional (2D) finite element (FE) calculations including a vector hysteresis model, namely a
vectorized Jiles-Atherton model. The particular case of a current-free FE model with imposed fluxes
and magnetomotive forces is studied. The non-linear equations are solved by means of the
Newton-Raphson method, which leads to the use of the differential reluctivity and permeability
tensor. The proposed method is applied to a simple 2D model exhibiting rotational flux, viz the
T-joint of a three-phase transformer.

Introduction
In the domain of numerical electromagnetism, the inclusion of hysteresis models in
finite element (FE) field computations remains a challenging task (Chiampi et al., 1995;
Dupré et al., 1998; Sadowski et al., 2002; Saitz, 1999). Mostly the scalar Preisach and
Jiles-Atherton hysteresis models are used. They are applicable to 1D, 2D and 3D FE
models displaying unidirectional flux (Chiampi, 1995; Sadowski et al., 2002; Saitz,
1999). In applications having rotational flux in part of the computation domain, a
vector hysteresis model should be used (Dupré et al., 1998). The non-linear equations
are iteratively solved by means of the fixed-point method (Chiampi et al., 1995; Saitz,
1999) or the Newton-Raphson method (Dupré et al., 1998; Sadowski et al., 2002; Saitz,
1999). The latter method has the advantage of fast convergence (near the exact
solution), but is somewhat more complicated to implement.

For 2D magnetic field computations, including those with hysteresis, the vector
potential formulation is almost invariably adopted: the vector potential has only one
non-zero component (along the third dimension) and the formulation is very easy to
implement. The scalar potential formulation is rarely used as it requires the calculation
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of sources fields and the definition of cuts, unless the (2D or 3D) domain is current-free
and simply-connected. However, the incorporation of a vector hysteresis model is very
analogous in both formulations, as will be shown in this paper. Applying the
Newton-Raphson method in a somewhat uncommon way, the differential reluctivity
and permeability tensors, respectively, naturally emerge (Dupré et al., 1998).

In this paper, we will consider a current-free 2D FE model with imposed fluxed and
magnetomotive forces (Dupré et al., 1998; Dular et al., 1999) and a vector generalization of
the Jiles-Atherton model (Bergqvist, 1996). The duality of the two formulations will be
pointed out and some results for a simple model with rotational flux will be presented.

Complementary formulations
Governing equations
We consider a simply-connected and current-free domain V in the xy-plane. The
magnetic field vector hðx; yÞ and the induction vector bðx; yÞ both have a zero
z-component and are related by the magnetic constitute law b ¼ bðhÞ or h ¼ hðbÞ:

For any continuous one-component vector potential a ¼ aðx; yÞ1z and scalar potential
u(x, y), the induction b ¼ curl a and the magnetic field h ¼ 2grad u automatically
satisfy div b ¼ 0 and curl h ¼ j ; 0; respectively. The FE discretisation ofV leads to the
definition of basis functions a lðx; yÞ ¼ a lðx; yÞ1 z and al (x, y) for the potentials a and u:

aðx; y; tÞ ¼
Xn

l¼1

ala lðx; yÞ ð1Þ

uðx; y; tÞ ¼
Xn

l¼1

ulalðx; yÞ ð2Þ

Commonly triangular elements and piecewise linear nodal basis functions are adopted.
The weak form of Ampère’s law curl h ¼ j ; 0 and the flux conservation law

div b ¼ 0 reads, before and after partial integration:

ðcurl h;a 0
kÞV ¼ 0 ) ðh; curla 0

kÞV þ kh £ n;a 0
klG ¼ 0; ð3Þ

ðdiv b;a 0
kÞV ¼ 0 ) ðb; grada 0

kÞV þ kb · n;a 0
klG ¼ 0; ð4Þ

where a 0
k ¼ a 0

kðx; yÞ1 z and a 0
kðx; yÞ are continuous test functions; ( · , · )V and k · , · lG

denote the integral of the (scalar) product of the two vector or scalar arguments over
the domain V and on its contour G, respectively; n is the inward unit normal on G.

Considering the basis functions as test functions, a system of algebraic equations is
obtained. For linear isotropic materials, having a constant scalar reluctivity n and
permeability m ¼ n21; with b ¼ mh; the elements of the system matrices (that are not
affected by the boundary conditions) are given by the following expressions:

ðn curla l ; curla kÞV ¼ ðn gradal ; gradakÞV; ð5Þ

ðm gradal ; gradakÞV: ð6Þ

Boundary conditions with flux walls and flux gates
Let us consider the case where the boundary G is a sequence of the so-called flux walls
Gwi and flux gatesGgi (Dupré et al., 1998; Dular et al., 1999). A flux wallGwi is an interface
with an impermeable medium ðm ¼ 0 ) b ¼ 0Þ; on which thus holds b · n ¼ 0; the
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associated magnetomotive force is Fi ¼ kh £ n; 1 zlGwi
: A flux gate Ggi is an interface

with a perfectly permeable medium ðm ¼ 1 ) h ¼ 0Þ; on which thus holds h £ n ¼ 0;
the flux through the gate, inward V, is given by Fi ¼ kb · n; 1lGgi

: It follows that the sum
of the magnetomotive forces Fi is zero, as well as the sum of the fluxes Fi.

An example with three flux walls and three flux gates is shown in Figure 1.
In the a-formulation, a(x, y) has a constant value Awi on each flux wall Gwi. Gate

fluxes Fk ¼ Awk 2 Awl ; or linear combinations of gate fluxes, can be strongly imposed
by fixing two or more Awi values. (At least one Awi is to be set, e.g. to zero, in order to
ensure the uniqueness of a.) An Awi value can also constitute an unknown of the
problem; this is a so-called floating potential. The corresponding magnetomotive force
Fi is then given, and weakly imposed via the contour integral in equation (3). Hereto a
dedicated basis function, denoted by awiðx; yÞ ¼ awiðx; yÞ1z; is defined. It has value 1 on
Gwi and decreases linearly to 0 in the layer of elements surrounding Gwi; it is the sum of
the classical nodal basis functions a i associated with the nodes situated on Gwi.

Analogously, in the u-formulation, flux gates have a priori known or floating
potential uðx; yÞ ¼ Ugi: In the latter case, the flux through the gate Fi is weakly
imposed via the contour integral in equation (4).

Linear test case
By way of example, some results for a linear magnetostatic case (T-joint of Figure 1,
F1 ¼ F2 ¼ 1; n ¼ m ¼ 1) are shown in Figures 2-4. The magnetomotive forces
obtained with the two formulations (Figure 3) are observed to converge monotonously
to each other, which is certainly not the case for the local induction value considered
(Figure 4).

Figure 1.
Two-dimensional model of

T-joint of a three-phase
transformer with three

flux walls and three flux
gates (width of

limbs ¼ 1 m)

Figure 2.
Isolines of a and u

(location of point p)
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Newton-Raphson method
Let us first consider a reversible non-linear isotropic material in V; hysteretic media will
be dealt with in the next section. The scalar reluctivity and permeability can be written
as a single-valued function of (the square of) the magnitude of b and h : n ¼ n ðb 2Þ and
m ¼ mðh2Þ: The systems of algebraic equations are non-linear and have to be solved
iteratively. The Newton-Raphson method is commonly used as it offers quadratic
convergence near the exact solution. Starting from initial (zero) solutions að0Þ and u(0),
subsequent approximations aðiÞ ¼ aði21Þ þ DaðiÞ and uðiÞ ¼ uði21Þ þ DuðiÞ; i ¼ 1; 2; . . .;
are obtained by linearising the non-linear systems around the ði 2 1Þth solutions aði21Þ

and uði21Þ: The linearization of equations (3) and (4) requires the evaluation of their
derivatives with respect to degrees of freedom al and ul. Given that

›h

›al

¼
›h

›b
curla l and

›b

›ul

¼ 2
›b

›h
gradal ; ð7Þ

Figure 4.
Magnitude of b in point
p as a function of number
of degrees of freedom

Figure 3.
Magnetomotive force
F2 ¼ 2F3 as a function
of number of degrees of
freedom
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the elements of the matrix of the linearised systems can be concisely written in terms of
the differential reluctivity and permeability tensors ›h=›b and ›b=›h :

›h

›b
curla l ; curla k

� �
V

and
›b

›h
gradal ; gradak

� �
V

: ð8Þ

For the isotropic materials considered, these tensors can be expressed in terms of the
functions n ¼ nðh 2Þ and m ¼ mðb 2Þ and their derivatives:

›h

›b
¼ n

¼
1 þ 2

dn

db 2
bb and

›b

›h
¼ m

¼
1 þ 2

dm

dh2
bb; ð9Þ

where bb and hh are the dyadic squares of b and h; and
¼
1 is the unit tensor. In the xy

coordinate system, the matrix representation of, e.g. the reluctivity tensor is

›h

›b

� �
¼

›hx

›bx

›hx

›by

›hy

›bx

›hy

›by

2
664

3
775 ð10Þ

¼ n
1 0

0 1

" #
þ 2

dn

db 2

bxbx bxby

bybx byby

" #
: ð11Þ

It follows that the expression in equation (8) for the elements of the Jacobian matrices
are equivalent with the more classical ones:

n curla l · curla k þ 2
dn

db 2
ðcurla l · bÞðcurla k · bÞ ¼

n gradal · gradak þ 2
dn

db 2
ðgradal · grad aÞðgradak · grad aÞ

ð12Þ

and

m gradal · gradak þ 2
dm

dh2
ðgradal · grad uÞðgradak · grad uÞ; ð13Þ

which are obtained when deriving the non-linear equations on the basis of equations (5)
and (6).

At the ith Newton-Raphson iteration, the Jacobian matrices and in particular the
differential reluctivity and permeability tensors are evaluated for b ¼ bði21Þ and
h ¼ hði21Þ, respectively. The right hand side vector is composed of the residuals
ðhðbði21ÞÞ; curla kÞV and ðbðhði21ÞÞ; grada kÞV, respectively, where for the sake of
brevity the contour terms and associated boundary conditions have been omitted.
Resolution of the linearised systems produces the increments DaðiÞ and Du(i), and the ith
solutions aðiÞ and u(i).

Jiles-Atherton model
Scalar model
In the scalar Jiles-Atherton model (Bergqvist, 1996; Chiampi et al., 1995; Sadowski et al.,
2002), the material is characterized by five (scalar) parameters (a, a, ms, c and k).
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The equations relevant to its vectorization (Bergqvist, 1996) and the FE implementation
are briefly given hereafter.

The scalar magnetisation m ¼ b=m0 2 h is the sum of a reversible part mr and an
irreversible part mi, with

mi ¼ ðm 2 cmanÞ=ð1 2 cÞ ð14Þ

mr ¼ cðman 2 miÞ; ð15Þ

where the anhysteretic magnetization man is a single-valued function of the effective
field he ¼ h þ am :

manðheÞ ¼ ms coth
he

a

� �
2

a

he

� �
: ð16Þ

The irreversibility of the material is contained in

dmi

dhe
¼

1

dk
ðman 2 miÞ with d ¼ sign

dh

dt

� �
: ð17Þ

An alternative definition may be adopted in order to prevent dmi=dhe and db=dh from
becoming negative (Bergqvist, 1996):

dmi

dhe
¼

jman 2 mij

k
if dh · ðman 2 miÞ . 0; else

dmi

dhe
¼ 0: ð18Þ

The differential susceptibility dm=dh and the differential permeability db=dh can then
be calculated for the given b, h and sign(dh):

db

dh
¼ m0 1 þ

dm

dh

� �
and

dm

dh
¼

c dman

dhe
þ ð1 2 cÞ dmi

dhe

1 2 ac dman

dhe
2 að1 2 cÞ dmi

dhe

: ð19Þ

For a given state (h1, b1) at an instant t1, h2 at a later instant t2 can be calculated when
given b2, and vice versa:

b2 ¼ b1 þ

Z h2

h1

db

dh
dh and h2 ¼ h1 þ

Z b2

b1

dh

db
db; ð20Þ

where dh=db is the inverse of db=dh: The integration has to be carried out numerically.
Unfortunately, the integrand does not only depend on the integration variable, i.e. h
and b, respectively, but also on b and h, respectively. Therefore, a Gauss integration
cannot be applied (as such).

Vector extension
We now outline the vector extension as proposed by Bergqvist (1996), but limit
the analysis to the isotropic case. In the vector generalization of equations (14-16)

COMPEL
23,4

964



and (18-20), the scalar fields are replaced by vector fields, e.g. b becomes b; while the
scalar differential quantities are replaced by tensors, e.g. db=dh becomes ›b=›h:
The division in equation (19) is replaced by the multiplication of the nominator
by the inverse of the denominator. The scalar 1 is replaced by the unit tensor

¼
1

where necessary. The vector extension of equations (16) and (18) needs special attention.
m an and ›m an=›h e are single-valued functions of h e :

m an ¼ manðjh ejÞ
h e

jh ej
; ð21Þ

›m an

›h e

¼
man

he
¼
1 2

h eh e

h2
e

 !
þ

dman

dhe

h eh e

h2
e

: ð22Þ

According to Bergqvist (1996), the vector extension of equation (18) consists in assuming
that the increment dm i is parallel to m an 2 m i; proportional to jm an 2 m ij=k and
non-zero only if dh · ðm an 2 m iÞ . 0: Considering a local coordinate system x 0y 0, with
the x 0-axis along the vector m an 2 m i (Figure 5), we thus have

›m i

›h e

� �
x 0y 0

¼
jm an 2 m ij

k

1 0

0 0

" #
if dh · ðm an 2 m iÞ . 0; else

›m i

›h e

¼ 0: ð23Þ

The matrix representation of ›m i=›h e in a coordinate system xy is then

›m i

›h e

� �
xy

¼ R
›m i

›h e

� �
x 0y 0

R T ð24Þ

with

R ¼
cosu sinu

2sinu cosu

" #
: ð25Þ

Using all the above equations (or their vector extension), ›b=›h can be calculated for
the given b and h; and given direction of dh: By inverting (the matrix representation of)
›b=›h; ›h=›b is obtained.

Some calculated bh-loci (with m0ms ¼ 2:1 T; a ¼ 50 A=m; k ¼ 82 A=m; c ¼ 0:1 and
a ¼ k=ms (Bergqvist, 1996)) are shown in Figure 6. Both alternating and rotational
excitations are considered.

Figure 5.
Local coordinate system

x 0y 0 with x 0-axis
along man 2 mi
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Incorporation in FE equations
For hysteretic material models, the differential reluctivity and permeability tensors
depend on the present state ðb; hÞ of the material as well as on the history of the
material. For the vector Preisach model considered in (Dupré et al., 1998), the history
consists of extreme values of the magnetic field projected on a number of spatial
directions. In the above outlined vectorized Jiles-Atherton model, the history is simply
contained in the direction of dh:

For stepping from the instant t1 to the next instant t2 ¼ t1 þ Dt; the ith
Newton-Raphson iteration requires the evaluation of the differential tensors ›h=›b and
›b=›h for b ¼ b2ði21Þ; h ¼ h2ði21Þ and dh ¼ h2ði21Þ 2 h1: After solving the systems of
equations in terms of Dal(i) and Dul(i), h2ðiÞ and b2ðiÞ are obtained by integrating the
differential tensors over ½b1; b2ðiÞ	 and ½h1; h2ðiÞ	, respectively.

Application example
The vector Jiles-Atherton model (with the parameter values given above) is applied to
the T-joint model considered in the complementary formulations section. The fluxes
F1 ¼ cosð2pft þ 2p=3Þ and F2 ¼ cosð2pftÞ; where the frequency f is arbitrarily
chosen to be 1 Hz, are imposed strongly in the a-formulation and weakly in the
u-formulation. Two periods are time-stepped with 200 time steps per period. During the
first quarter of a period, the fluxes F1 and F2 are multiplied with the function
ð1 2 cosðpt=trelaxÞÞ=2; with trelax ¼ 0:25; in order to step smoothly through the first
magnetization curve of the hysteretic material. The mesh with 661 spatial degrees for
a(x, y, t) and 715 for u(x, y, t) is used.

The magnetomotive forces F1ðtÞ and F2ðtÞ obtained with a- and u-formulations
are shown in Figure 7. A very good agreement is reached. The b-locus and bxhx and
bxhy-loops in the point p (shown in Figure 2) are shown in Figure 8. The agreement is
somewhat less good, as could be expected for a local quantity.

Conclusions
The implementation of a vectorized Jiles-Atherton model in 2D FE magnetic field
computations with complementary formulations has been studied. When solving the
non-linear equations by means of the Newton-Raphson method, the differential
reluctivity and differential tensors naturally emerge.

The proposed methods have been successfully applied to a simple 2D FE model
with rotational flux. A good agreement has been achieved between the results obtained
with the two formulations.

Figure 6.
bh-loci at alternating
excitation (left) and
bxhx-loci (or byhy-loci) at
rotational excitation
(right), with ĥ ¼ 100; 150
and 300 A/m
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Figure 8.
b-locus (up) and bx hx and
byhy loops (down) obtained
with a and u formulations

Figure 7.
Magnetomotive forces

F1ðtÞ and F2ðtÞ obtained
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Abstract The coupling between a 3D modified magnetic vector potential formulation discretized
by the finite integration technique and an electrical circuit that includes solid and stranded
conductors is presented. This paper describes classical time integration methods and the implicit
Runge-Kutta methods, the latter being an appropriate alternative to the first ones to solve
effectively index 1 differential-algebraic equations arising from combined simulation of
electromagnetic fields and electrical circuits.

1. Introduction

The combined simulation of electromagnetic fields and electrical circuits is typical for
quasistatic electromagnetic field calculations. In a field-circuit coupled model, a part of
the model is discretized, e.g. by Whitney finite elements (Bedrosian, 1993; Bossavit,
1997; Tsukerman et al., 1992) or by the finite integration technique (FIT) (Clemens et al.,
2001) which allows us to consider complicated geometries and local saturation or eddy
current effects, whereas other parts, e.g. external sources and loads, are treated
by lumped parameters within a circuit model (De Gersem et al., 1998; Mertens et al.,
2000).

The point here is that the FIT discretization of the magnetodynamic part of the
model and its following coupling with external circuits leads to large
differential-algebraic systems of equations that cannot be treated numerically like
regular ordinary differential equations (Nicolet and Delincé, 1996). Since they are index
1 problems they should be treated by implicit time integration schemes, e.g. by implicit
Runge-Kutta-type methods. Their realization also makes possible to implement
adaptive time-stepping within the integration process thus effectively optimizing the
CPU time.
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2. Finite integration technique
FIT (Weiland, 1977) is a generalized finite-difference discretization scheme mapping
Maxwell’s equations onto a dual grid doublet {G; ~G} yielding the set of
Maxwell-Grid-Equations (MGE),

C
_
e ¼ 2

d

dt

_

b
_

; ~C
_

h ¼
d

dt

_

d
_

þ
_

j
_

S
_

b
_

¼ 0; ~S
_

d
_

¼ q
; ð1Þ

where
_
e and

_

h denote component vectors of the electric and magnetic grid voltages,
_

d
_

and
_

b
_

are vectors of the electric and magnetic facet fluxes and
_

j
_

is a vector of dual
facet currents. The matrix operators C and ~C correspond to the curl-operators on the
primary and on the dual grid. They contain only grid topology information and repeat
exact relations. The same holds for the discrete divergence-operators S and ~S: The
approximation in FIT is introduced only in the discrete constitutive material relations
where the grid voltages on the edges of G are coupled with the flux degrees of freedom
located on the facets of the dual grid ~G and vice versa, i.e.

_

d
_

¼ M1
_
e;

_

j
_

¼ Mk
_
e;

_

h ¼ Mn

_

b
_

; ð2Þ

where M1, Mk and Mn are the material matrices for the permittivities, conductivities
and reluctivities, respectively.

The duality of the grid doublet {G; ~G} results in the following topological property
of the MGE

C ¼ ~CT; ð3Þ

reflecting the analytical relations,

C ~ST ¼ 0 $ curl grad ; 0

SC ¼ 0 $ div curl ; 0
ð4Þ

which are essential for the stability and efficiency of the numerical schemes being used
for time-integration (Clemens and Weiland, 1999).

3. Transient coupled formulation
The 3D transient field-circuit coupled formulation discretized by FIT reads:

Mk 0 0
2QTMk NC 0
2PT 0 2NL

2
4

3
5 d

dt

_
a
v
i

2
4
3
5þ

~CMnC 2MkQ 2P
0 NG D
0 DT 2NR

2
64

3
75

_
a
v
i

2
4
3
5

¼

0
2Dsis

Bsvs

2
4

3
5;

ð5Þ

where
_
aðtÞ is the vector of path integrated magnetic vector potentials, ~CMnC stands for

the positive-semidefinite curl-curl stiffness matrix and Mk is the conductivity matrix,
which is commonly singular (Clemens et al., 2001). For the electrical network, a mixed
formulation is preferred in order to avoid the introduction of additional nonzero entries
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in the large, but sparse matrices ~CMnC and Mk (De Gersem et al., 1998) and to prevent
zero entries at the diagonal of the circuit system matrix (Tsukerman et al., 1992).

D is the fundamental cutset matrix part collecting the indices between the
fundamental cutsets and the links for which circuit unknowns are defined. Construction
of the fundamental cutset matrix itself is subjected to a priority rule that favours
independent voltage sources, solid conductors and capacitors to be selected as tree
branches. The voltage drops v and the currents i are assigned as degrees of freedom to
the tree branches and the cotree branches, respectively. The Kirchhoff’s current and
voltage laws are expressed for the fundamental cutsets and loops. The circuit elements
are represented by the conductance matrices NG, resistance matrices NR, capacitance
matrices NC, and inductance matrices NL. The vectors vs and is contain the voltage drops
and the currents supplied to the system by independent voltage and current sources. Ds

is the fundamental cutset matrix part with the incidences between the considered
fundamental cutsets and the independent current sources, where as Bs is the
fundamental loop matrix part with the incidences between fundamental loops and
independent voltage sources.

A clear distinction between two possible types of conductors – stranded – and
solid-type conductors is made. A stranded conductor is made of many thin strands.
The cross-section of the individual strand of a stranded conductor is so small that for
the expected frequencies the eddy currents are negligible. In formulation (5) this fact is
taken into account by introducing zeros at the corresponding positions of the
conductivity matrix Mk. Resolving the individual strands by the FIT grid is not
required. In contrast, solid conductors are characterized by significant skin effects and
carry non-negligible eddy currents. The corresponding models for the solid and
stranded conductors are shown in Figure 1, where Isol and Istr are the total currents
through the solid and stranded conductors, respectively; Ssol and Sstr are the
cross-sections of the solid and stranded conductors, DVsol and DVstr are the voltage
drops along the solid and stranded conductors, Sw is the cross-section of a single
strand, and VFIT is the FIT domain.

Stationary current field simulations are carried out in advance in order to determine
the source current distribution in the solid or stranded conductor and to derive the
coupling blocks MkQ and P (Dular et al., 2000). For a solid conductor, coupling term
between the field and the circuit model Q ¼ ~Sf is solved from the stationary current
field formulation ~SMk

~STf ¼ 2 ~SMk
_
eapp; where the voltage vector

_
eapp is constructed

by assigning voltage drops of 1 V at a set of primary edges perpendicular to a
cross-section of the solid conductor. For a stranded conductor, the current
distribution due to the applied current of 1 A is determined in a geometrical way.

Figure 1.
(a) Solid conductor and
(b) stranded conductor
models
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For a coil constructed by the extrusion of a profile along a curve, the current coupling
term P equals the homogeneous distribution of a total current of 1 A multiplied by the
number of turns over the successive cross-sections.

4. Adaptive time stepping
4.1 Classical integration methods
Formulation (5) represents an ill-conditioned index 1 differential-algebraic system of
equations:

D
d

dt
x þ Kx ¼ rðtÞ: ð6Þ

The u-time discretization scheme applied to solve equation (6) is written in the form:

1

Dt
Dðxnþ1 2 xnÞ þ Kðuxnþ1 þ ð1 2 uÞxnÞ ¼ urnþ1 þ ð1 2 uÞrn: ð7Þ

The lower indices n and n+1 correspond to the time instants tn and tnþ1 ¼ tn þ Dt;
respectively. Different choices of the parameter u lead to the following classical
methods of numerical integration: u ¼ 1 yields the implicit Euler method, u ¼ 1=2
corresponds to the Crank-Nicolson method, u ¼ 2=3 yields the Galerkin method.

The symmetry of the matrix pencil ½ðu=DtÞD þ K� is restored by multiplying the
circuit equation block by the scalar factor Dt/u. The resulting coupled system is
indefinite due to the mixed nature of the circuit formulation. Therefore, for reasons of
numerical stability, the transient formulation is turned into its positive semi-definite
equivalent obtained by eliminating the circuit equations (in a Schur complement
formulation). The u-method is then applied only for the magnetic vector potential
unknowns followed by the update of the circuit degrees of freedom with the
corresponding Schur complement.

System (6) represents an index 1 differential-algebraic system and usually cannot be
treated numerically as regular ordinary differential system of equations. Thus, some
u-methods may appear to be unstable for these types of problems hence implicit
integration methods should be used instead.

4.2 Implicit Runge-Kutta methods
An s-stage implicit Runge-Kutta (RK) method is given by the Butcher table:

c A

bT

;

where A is a real matrix of dimension s £ s; c and b are real vectors of dimension s
(Hairer et al., 1993). Using the initial condition x0 at t0 the ith stage of an implicit RKM
is defined as:

Xi ¼ x0 þ h
Xs

i¼1

aijX
0
j: ð8Þ
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After that, Xi should be substituted for x and X0
i for x0 into system (6) and the resulting

system of equations has to be solved. When all the stage values are calculated, the
update for the solution in the next time point is followed by:

x1 ¼ x0 þ h
Xs

i¼1

biX
0
j: ð9Þ

4.3 Adaptive time-stepping
Adaptive time-stepping can be implemented elegantly using embedded implicit RK
methods, which for each time step deliver a solution of the given order p and an
embedded solution of a lower order p̂: Such embedded method uses the same matrix A,

but different update vectors b and b̂: Since the system is iterated only for the magnetic
vector potential degrees of freedom, an error vector

_
y ¼

_
aðpÞ 2

_
aðp̂Þ with the solutions

of the orders p and p̂ is constructed similar as in Clemens et al. (2002).
The following step in the adaptive time-stepping procedure is to find a suitable

norm for the error vector. A suitable norm is given in Wang et al. (2002):

k
_
ykerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
_
yk

2
2

k
_
a
ðpÞ
nþ1k

2
2 þ d

vuut ð10Þ

where d is an absolute error tolerance value. Following the idea presented by Clemens
et al. (2002) the parameter d in equation (10) is chosen as a proper fraction u[ [1023,
1022] of the maximum norm of the magnetic fluxes that were calculated so far during
the time marching process:

d ¼ u
t2½t0;ti�
max k

_
aðtÞk

2
2

n o
: ð11Þ

Another suitable norm is given by:

k
_
ykerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

_
yi

j
_
aij þ �ai

� �2

vuut ; ð12Þ

where �ai is an absolute error tolerance for the component
_
ai (Gustafsson, 1994). We will

not choose different absolute tolerances for each specific solution component and
according to Clemens et al. (2002), the proper choice for �a is given by:

�a ¼ u £
t2½t0;ti�
max{k

_
aðtÞk1} ð13Þ

and u [ ½1022; 1021�:

4.4 Time-step selection procedure
The choice whether the last integration step is to be repeated or a new simulation step
can be performed, is determined by a step-size controller. Here, the solution is rejected
if k

_
ykerr . m · tol holds true; otherwise it is accepted. The variable m denotes an

accelerating factor usually set to 1.2 and tol is a user-specified tolerance.
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As proposed by Gustafsson (1994), an I-controller-type time-step predictor is
implemented by:

Dtnþ1 ¼ r
tol

k
_
yk

n
err

� �1=p

Dtn; ð14Þ

where r denotes a safety factor that is usually set to 0.9 (Lang, 1995).

5. Results
A test model consists of a conductive ring (Figure 2(a)) which is either treated as a
current-driven solid conductor (Figure 2(b)) or a voltage-driven stranded conductor
(Figure 2(c)). The excitation current and voltage functions of the independent sources
are

I ðtÞ ¼ Imax sinðvtÞ and V ðtÞ ¼ V max cosðvtÞ;

respectively. For both models, the coupled formulations were derived and then treated
with the implicit (backward) Euler method, the Galerkin method, and the
Crank-Nicolson method (Nicolet and Delincé, 1996). The simulated currents and
voltage drops are shown in Figures 3-5.

Figure 2.
(a) Conductive ring;

electrical circuit models
with: (b) solid conductor

and (c) stranded conductor

Figure 3.
Implicit Euler method:

(a) calculated current for
the stranded conductor

and (b) calculated voltage
for the solid conductor
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In the stranded conductor test case, system (5) can be integrated in time in an analytical
way. This allows for this test case the calculation of the absolute error of the different
time integration schemes. For the solid conductor test case, only a complex-valued
impedance reflecting the time-harmonic response of the system can be computed
analytically. Hence, the time-integrated simulation results can only be compared to
analytical data starting from that time instant when the transient phenomenon has
vanished.

It is observed that only the stiffly accurate and L-stable implicit Euler method of
first order is a suitable time integration method for field-circuit coupled problems
(Hairer and Wanner, 1996). Some initial oscillations in the solution occur due to the lack
of stiff accuracy of the Galerkin method. Since the Crank-Nicolson shows strong
oscillations in the solution it is found to be unreliable for these simulations
(Tsukerman, 1995).

The described model of the electrical network with the stranded conductor excited
by the voltage source of the form V ðtÞ ¼ V max sinðvtÞ was also treated with the stiffly
accurate singly diagonally implicit four stage Runge-Kutta method of order three with
the embedded solution of order two (SDIRK3(2)), for which matrix A is (Cameron et al.,
1998):

Figure 5.
Crank-Nicolson method:
(a) calculated current for
the stranded conductor
and (b) calculated voltage
for the solid conductor

Figure 4.
Galerkin method:
(a) calculated current for
the stranded conductor
and (b) calculated voltage
for the solid conductor
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1 2
ffiffiffi
2

p
=2 0 0 0ffiffiffi

2
p

=2 1 2
ffiffiffi
2

p
=2 0 0

5 2 3
ffiffiffi
2

p
4
ffiffiffi
2

p
2 6 1 2

ffiffiffi
2

p
=2 0ffiffiffi

2
p

=3 þ 1=6
ffiffiffi
2

p
=6 2 1=3 1=6 1 2

ffiffiffi
2

p
=2

2
666664

3
777775 ð15Þ

and the vectors bT and b̂T are equal to the second and fourth rows of matrix A,
respectively, and ci ¼ aij; i; j ¼ 1; . . .; s: Figure 6 shows the behavior of the higher
order solutions for the current calculated with SDIRK3(2) for one and same values of tol
and u, namely tol ¼ 1:0 £ 1022 and u ¼ 1:0 £ 1022; but with different norms of the
error vector applied. Table I contains the overall monitored data on the influence of the
chosen error norm ((10) or (12)) and the absolute tolerance on the number of accepted
and rejected time-steps and the observed maximum relative error.

6. Conclusion
Stiffly accurate and L-stable Implicit Runge-Kutta time-integration methods as the
SDIRK3(2) with the embedded solutions of higher and lower order enable an
error-controlled adaptive time-step selection which changes the time-step length
depending on the behavior of the considered transient process. Therefore, they are the
method of choice for simulating field-circuit coupled problems. The classical u-methods
do not feature such embedded solution and were shown to suffer from stability
problems except for the lowest order implicit Euler scheme.

Figure 6.
Stranded conductor:

higher order currents
calculated with: (a) norm

(10) and (b) norm (12)

Tol
1.0 £ 1021 1.0 £ 1022 1.0 £ 1023

Norm Steps Error Steps Error Steps Error

10 u ¼ 1.0 £ 1022 21/11 6.8 £ 1022 50/24 3.8 £ 1022 95/48 1.6 £ 1022

u ¼ 1.0 £ 1023 22/16 6.2 £ 1022 55/30 1.76 £ 1022 104/57 1.3 £ 1021

12 u ¼ 1.0 £ 1021 76/42 7.6 £ 1022 117/99 2.9 £ 1023 369/217 3.8 £ 1024

u ¼ 1.0 £ 1022 92/63 1.7 £ 1022 177/106 1.3 £ 1022 355/164 6.8 £ 1023

Table I.
The influence of the

chosen error norm and
the absolute tolerance

on the number of
accepted/rejected

time-steps and the
observed maximum

relative error
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Field-circuit model of the
dynamics of electromechanical
device supplied by electronic

power converters
Lech Nowak and Jacek Mikołajewicz
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Keywords Electromagnetism, Electric converters, Simulation

Abstract This paper presents a coupled field-circuit simulation of transients in a non-linear
electromagnetic device supplied by electronic power converters (inverters, PWM systems). The eddy
currents induced in solid cores are considered. The mathematical model of transients includes:
equation of electromagnetic field, equations of the electric circuits and equation of motion.
Numerical implementation of the algorithm is based on the finite element method. For
time-stepping the Cranck-Nicholson scheme has been applied.

1. Introduction
In modern electromechanical systems it is very convenient to control the supply
voltage by the electronic power converters. In such case, we have an impact on the
voltage value, frequency and the waveform shape.

In the paper, the dynamic operation of the electromagnetic actuators supplied with
the inverters and PWM systems is analyzed. The coupled field-circuit model for
simulation of transients has been elaborated. The model includes:

(1) equation of transient electromagnetic field,

(2) equations of the electric circuits of the converter and supply system, and

(3) equation of motion.

Numerical implementation is based on the finite element method. For time
discretization the Cranck-Nicholson scheme has been applied. In order to include
non-linearity the Newton-Raphson process has been adopted.

2. The finite element implementation
In the paper, converters with axial symmetry are considered. The two-dimensional
cylindrical co-ordinate system r, z has been adopted. In such case the movement may
be only in the z-direction and therefore, the equation describing transient field in a
non-linear conducting and moving medium takes the form:

›

›r

n

r

›F

›r

� �
þ

›

›z

n

r

›F

›z

� �
¼ Jw 2

g

r

›F

›t
2 v

›F

›z

� �
ð1Þ

where Jw is the current density in the windings, r ¼ 2pr; Fðr; z; tÞ ¼ rAwðr; z; tÞ; n; g
are the reluctivity and conductivity, respectively. As a result of FEM application, the
following set of equations is obtained (Mikołajewicz, 2001; Nowak, 1999; Silvester and
Ferrari, 1983):
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SF ¼ Ni 2 GðdF=dtÞ2 vGzF ð2Þ

where S is the stiffness matrix, F is the vector of nodal potentials, G is the diagonal
matrix of conductances of elementary rings formed by 2D mesh, Gz is the matrix
representation of the operator “›=›z”, i is the vector of currents in the windings, N is
the matrix of turn numbers associated with the nodes within the winding regions
(Mikołajewicz, 2001; Nowak, 1999).

The time-stepping Cranck-Nicholson scheme has been applied. At the nth time step
the following set is obtained:

MnFn ¼ Nin þ GEn21 þ vnGzFn ð3Þ

where

Mn ¼ Sn þ ð0:5DtÞ21G; En21 ¼ ð0:5DtÞ21Fn21 þ ›F=›tjn21:

The last term in equation (3) is computed iteratively (Golub and Van Loan, 1983;
Mikołajewicz, 2001).

If currents i(t) are enforced then at each time-step equation (3) may be solved
directly. Otherwise, the currents in the device windings are not known in advance and
therefore, the circuit equations must be considered (Nowak, 1999; Piriou and Razek,
1992; Ren and Razek, 1994).

3. Coupled discrete field-circuit model of transients
The separated branch of the electric circuit may contain: the exciting winding and
external resistance, inductance and capacitance. The semiconductors are represented
as non-linear, time-varying resistors.

Let nb be the number of branches. Then, after branch connection into ne

independent loops, a system of ne equations is obtained:

KT dC

dt
þ KT Rw þ R þ L

d

dt

� �
Ki0 þ KTuc ¼ u0 ð4aÞ

dðKTucÞ=dt ¼ KTC21Ki0 ð4bÞ

where C ¼ NTF is the vector of flux linkages, Rw is the matrix of winding
resistances, R, L, C are the matrices of the external resistances, inductances and
capacitances, uc is the vector of capacitance voltages, i0 and u0 are the loop currents and
voltages, respectively, K is the incidence matrix describing the connections of
branches, such that i¼Ki0. After time discretization the discrete form of the Kirchhoff’s
equations is obtained. For the nth instant, after eliminating voltages ucn, the following
set of algebraic equations is obtained:

KTNTFn þ DtKT Rw þ R þ DtC21 þ ðDtÞ21L
� �

Ki0n

¼ Dtu0
n þ KTNTFn21 þ KTLKi0n21 2 DtKTucn21 ð5Þ

Including field equations (equation (3)), the global system of coupled field-circuit
equations contains ne þ nn unknowns, i.e. ne independent currents i0n and nn nodal
potentials Fn.
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Because of the non-linearity of the ferromagnetic core, the stiffness matrix S in
equation (2) and matrix M in equation (3) vary in successive time steps. At the nth
instant, these matrices depend on the solution Fn and therefore, they must be
determined iteratively. In the elaborated algorithm the Newton-Raphson process has
been adopted. At the nth instant and kth iteration, the vectors Fn and i0n in equations
(3) and (5) are replaced with vectors dFk

n ¼ Fk
n 2Fk21

n and di0
k
n ¼ i0

k
n 2 i0

k21
n ;

satisfying the sets of equations Pk
ndF

k
n ¼ Rk

Fn and DtZ0di0
k
n ¼ Rk

in where Rk
Fn; Rk

in
are the residual vectors of the field and circuit equations (Mikołajewicz, 2001; Nowak,
1999; Piriou and Razek, 1992).

4. Discrete model of the dynamics
Under dynamic conditions, the electromagnetic force F(t) and consequently, the
armature displacement x(t) are not known in advance. In such a case, the equation due
to motion must also be included.

An equation of linear mechanical motion taking the friction into account can be
written in the following form:

mðdv=dtÞ þ kfv þ F lðxÞ ¼ FeðF; xÞ ð6Þ

where m is the moving mass; kf is the coefficient of friction; FeðF; xÞ and F lðxÞ are the
electromagnetic and loading forces, respectively; x and v are the displacement and
velocity of moving parts, respectively.

According to the Cranck-Nicholson scheme the velocity and acceleration at t ¼ tn

are computed as follows (Mikołajewicz, 2001; Nowak, 1999):

vn ¼ 2ðDtÞ21ðxn 2 xn21Þ2 vn21 ð7Þ

dv=dtjn ¼ 2ðDtÞ21ðvn 2 vn21Þ2 ð›v=›tÞjn21 ð8Þ

Substituting equations (7) and (8) into the equation of motion the displacement xn of the
moving element can be obtained:

xn ¼ xn21 þ
½m þ 0:25 kfDt�vn21Dt

m 2 0:5 kfDt
þ

0:25½ðFen 2 F lnÞ þ mð›v=›tÞjn21�ðDtÞ2

m þ 0:5 kfDt
ð9Þ

Finally, using equation (7) the value of vn is computed and then substituted into the set
of FEM equation (3).

The electromagnetic force, Fen, and loading force, Fln, in equation (6) are not known
in advance. Therefore, in order to determine the displacement xn, the iterative
calculations are required. In each iterations the non-linear field-circuits problem is
solved. In a single time-step, the field distribution is calculated dozens or even
hundreds of times, and therefore, it is very important to elaborate an effective
procedure for determination xn.

5. Algorithm of solving a motion equation
In the proposed algorithm, the displacement x1

n

� �
as

in the first iteration of the nth time
step is assumed on the basis of Newton’s polynomial extrapolation ~xðtÞ of function x(t).
For example, assuming polynomial of order r ¼ 3, we obtain:
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x1
n

� �
as
¼xn24 þ A1ðtn 2 tn24Þ þ B2ðtn 2 tn24Þðtn 2 tn23Þ

þ C3ðtn 2 tn24Þðtn 2 tn23Þðtn 2 tn22Þ

ð10Þ

where A1;B2;C3 are the coefficients of the polynomial constructed on the basis of four
positions: xn24; xn23; xn22; xn21 of the moving element at four previous instants
tn24; tn23; tn22; tn21 (Nowak, 1999). After assuming ðx1

nÞas; the mesh is regenerated and
then field distribution Fn, and electromagnetic force Fen are computed. Next, on the
basics of equation (9), the new value ðx1

nÞcal of the displacement is determined. If
jðx1

nÞas 2 ðx1
nÞcalj=ðx

1
nÞcal . 1x (1x – permissible incorrectness of the iterative process)

then using the chord procedure, the next value of displacement is assumed.
If the moving part has an infinite length, then the structure of the system and the

FEM mesh remain unchanged during the movement. In that case, calculation of the
displacement is not necessary. Only the value vn of the velocity in equation (3) has to be
computed. After eliminating xn in equations (7) and (8), the velocity can be expressed as
follows:

vn ¼
ðFen 2 F lnÞ þ ðFen21 2 F ln21Þ

2m=Dt þ kf
þ

ðm=Dt 2 0:5kfÞvn21

m=Dt þ 0:5kf
ð11Þ

To test the elaborated algorithm, the dynamic state of the Tubular Linear Induction
Motor (Figure 1) has been analyzed.

The number of iterations depends on the order of interpolation ~xðtÞ or ~vðtÞ: Figure 2
shows the number of iterations versus the order of interpolation. Assuming
permissible error 1v ¼ 0:001 in algorithm based on equation (11), the best results are
obtained for approximation v(t) of order r ¼ 2 (Figure 2(a)). If the error 1v is smaller,
then the algorithms with higher approximation becomes more effective. For 1v ¼
0:00001 the most effective is procedure with r ¼ 3 (Figure 2(b)). When using algorithm
concerning the displacement xn, (based on equation (9)), the higher optimal order of
approximation x(t) is obtained. This is because

xðtÞ ¼

Z
vðtÞdt:

The results of dynamic simulation of the TLIM, after application of the supply
three-phase voltage system are shown in Figure 3. The relative values of the
electromagnetic force FeðtÞ; displacement x(t) and velocity v(t) the time have been

Figure 1.
Three-phase tubular linear
induction motor (TLIM)
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shown. Calculations were performed for order r ¼ 2 assuming permissible
incorrectness 1v ¼ 0:001 (Figure 3(a)) and 1v ¼ 0:01 (Figure 3(b)).

In the second case the global number of iteration is about 30 percent less, but in the
waveforms Fe(t) some ripples (which does not exist in real object) occurred.

6. Inverter supplied linear motor
Three-phase TLIM supplied by three-phase voltage inverter (Figure 4) has been
analyzed. Output voltage is controlled by d.c. voltage UD and by the change of the
conducting angle l. Ideal characteristics of semiconductors has been assumed.

If the control angle b ¼ 0; i.e. conducting angle l ¼ p; then we have six inverter
steps. The circuits are characterized by two degrees of electric freedom. Assuming that
in the first step the switches S1, S3 and S5 are on, the equivalent scheme corresponding
to that step is shown in Figure 5.

Assuming loop currents i01; i
0
2 as shown in Figure 5, the structure of the successive

circuits can be described by six sequential incidence matrices:

Figure 2.
Number of iteration vs
order of approximation
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Figure 3.
Waveforms of: force Fe(t),
displacement x(t), and
velocity v(t)

Figure 4.
Three-phase voltage
inverter
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KT ¼
1 21 0

1 0 21

" #
;

1 21 0

0 21 1

" #
;

1 0 21

1 21 0

" #
;

21 1 0

21 0 1

" #
;

21 1 0

0 1 21

" #
;

21 0 1

21 1 0

" # ð12Þ

If the angle b. 0, then we have 12 steps, so there are 12 incidence matrices. In
additional steps one of the two parallel branches (Figure 5) is disconnected.

The transient simulation of the TLIM supplied by the voltage inverter has been
performed. The field-circuits approach described in Section 3 has been applied. Figure 6
shows the currents i1ðtÞ; i2ðtÞ and i3(t) in the motor windings. The waveforms are
non-sinusoidal and this means that additional power losses in the motor core are
caused. The bold line shows the d.c. source current iD(t).

7. Dynamic operation of PWM supplied electromagnetic actuator
To increase the initial electromagnetic force of an d.c. electromagnetic actuator and
improve its dynamic characteristic, at the beginning of the operation the supply
voltage is temporarily enhanced to the value UE ¼ kpUN . UN (Nowak et al., 2000).

Figure 5.
Loop currents in inverter

circuits

Figure 6.
Phase currents and the

current absorb from the
power source
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On completion of the dynamic operation (at the time tp) the voltage is decreased to the
rated value UN. The voltage control may be realized by the pulse width modulation.
For t , tp the converter is supplied by the voltage UE ¼ const: For t . tp the pulsing
process starts. In order to obtain the mean value of supply voltage equal to UN the
pulse width should be equal to 1=kp f ; where f is the pulsing frequency.

The transient of an axisymmetrical plunger-type actuator with non-linear
conducting core has been analyzed. Time-variations of winding current i*(t) and
electromagnetic force F*(t) related to the steady-state values, for t $ tp ¼ 0:045 s; after
the application of 2 and 24 kHz pulse voltage U ¼ 24 V are shown in Figure 7(a) and (b).

8. Conclusion
The algorithm and software developed can be an effective tool for transient simulation
of the electromechanical converters with non-linear conducting cores. The coupling of

(1) equations of electromagnetic field,

(2) equations of electric circuits, and

Figure 7.
Current pulsation for pulse
frequency
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(3) equation of the motion enables analysis of transient electromagnetic
phenomena in cases of the device operation when the winding currents and
the armature displacement are not known in advance.

The complicated supply systems may be considered.
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Abstract This paper deals with coupled electromagnetic, hydrodynamic and mechanical motion
phenomena in magnetorheological fluid brakes. The governing equations of these phenomena are
presented. The numerical implementation of the mathematical model is based on the finite element
method and a step-by-step algorithm. A computer program based on this algorithm was used to
simulate the transients in a prototype of magnetorheological brake. The results of the calculations
and measurements are presented.

1. Introduction
The demand for electromechanical devices with upgraded functional parameters both
in their steady and transient state has been growing in recent years. The research on
how to improve these parameters has taken several directions. One of them involves,
among others, the use of magnetorheological fluids with their physical properties
changing under the influence of magnetic fields, for electromechanical converter
applications.

Magnetorheological fluids (or simply MRF) were invented by Jacob Rabinow in the
late 1930s (Rosensweig, 1985). Their characteristic features involve viscosity change
upon the application of magnetic field. A change in viscosity is inseparably connected
with a change of yield stress t0 in the fluid. The working principle of
magnetorheological electromagnetic transducers is based on the fact that viscosity
changes when the fluid is exposed to magnetic field. Naturally, the viscosity of the fluid
and the stresses developed within it are related to the magnitude of the applied
magnetic flux density B. The viscosity and the stresses increase with the growth of the
field and so does the yield strength counteracting the motion of moveable parts in the
transducers. Owing to their properties, magnetorheological fluids are useful for the
efficient control of the transmission of torques and forces. They are used, among
others, in rotary brakes, clutches, and rotary and linear dampers.

MR devices are studied in many renowned scientific centres throughout the world.
The research focuses on the analyses of the operating states of existing devices and on
the methods of improving their functional parameters but altogether new designs are
also under constant development [1] (Carlson et al., 1996, Verardi and Cardoso, 1998).

2. Properties of magnetorheological fluids
Magnetorheological fluid is a colloidal suspension of magnetically polarised particles
with diameters ranging from 0.5 to 10mm in a carrier fluid, mostly synthetic oil with a
low evaporation rate or water [1] (Carlson et al., 1996). A typical MRF contains
ferromagnetic particles ranging from 20 to 80 per cent, by weight. The main feature of
the fluid is dramatic change of viscosity and consequently, of shear stress upon the
application of magnetic field. The relationship between the yield stress t0 and the
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magnetic flux density B for Lord MRF-132LD is shown in Figure 1. The stress changes
during the increase and decrease of magnetic flux density occur in microseconds
(Carlson et al., 1996). The fluids retain their properties in the temperature range from
240 to 1508C. Relative magnetic permeability of the fluid is small, mr , 10:

3. Magnetorheological brake
The magnetorheological fluid brake built at Poznań University of Technology is
shown in Figure 2 (Szeląg, 2002). This is a cylindrical-rotor brake system. Magnetic
field is excited by a ring coil in a stator. The 132LD MRF produced by Lord
Corporation was used in the brake. The diameter and the length of the rotor are 26.8
and 27 mm, respectively. The maximum braking torque is c. 1.7 Nm. One of the
advantages of the brake is low electric power consumption of the winding, not
exceeding a couple of watts.

Figure 1.
The yield stress t0¼ f(B)

for MRF 132LD

Figure 2.
The brake with MRF
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The paper proposes a mathematical model of coupled electromagnetic, hydrodynamic
and mechanical motion phenomena that can be applied to simulate steady and
transient states of the magnetorheological fluid brake.

4. Coupled phenomena model
The phenomena observed in electromagnetic brakes with magnetorheological fluid
needs to be analysed in terms of fields. In the brake the velocity field of the fluid
depends on the angular velocity of the rotor and distribution of the yield stress in the
fluid. These stresses are function of the magnetic field distribution. The yield strength
counteracts the motion of the rotor in the brake. Therefore, the velocity field of the fluid
and the mechanical stress field are coupled with the electromagnetic field. The field
coupling makes the analysis of the transients in the brake highly complicated. What
makes it even more intricate is the changing character of those fields and the non-linear
character of the equations describing them. So far, there are no comprehensive
approaches to elaborate the problem of solving the time dependent coupled field
phenomena. Most papers concerning the subject usually deal with the field analysis of
some selected phenomena observed in transducers (Besbes et al., 1996; Chung, 1978;
Demenko, 1994).

The paper is an attempt to build a model of coupled phenomena in
magnetorheological transducers. It focuses on electromagnetic and hydrodynamic
phenomena and also on the dynamics of movable elements in the brake. The problems
pertaining to heat, ventilation and vibration have been disregarded.

A magnetorheological brake with axial symmetry is considered in the study.
A cylindrical coordinate system r, z, q was applied. In this case, the equation
describing the transient electromagnetic field in the brake can be expressed as (Nowak,
1998; Szeląg, 2002)

›

›r

1

ml

›w

›r

� �
þ

›

›z

1

ml

›w

›z

� �
¼ J 2

g

l

›w

›t
: ð1Þ

Here l ¼ 2pr; w ¼ 2prAq; where Aq is the magnetic vector potential, J ¼ i=s is the
current density in the winding, i is the winding current, s is the cross-sectional area of
the conductor, m is the magnetic permeability and g is the conductivity of the region
with eddy currents. For the MRF g ¼ 0:

In general, the transient electromagnetic field in MRF devices is voltage-excited.
This means that the currents i in the windings are not known in advance, i.e. prior to
the electromagnetic field calculation (Nowak, 1998; Szeląg, 2000). Therefore, it is
necessary to consider the equations of the electric circuit of the device. The set of
independent loop equations may be written as

u ¼ Ri þ
d

dt
C; ð2Þ

where u is the vector of supply voltages, i is the vector of loop currents, R is the matrix
of loop resistances, and C is the flux linkage vector. The vector C is calculated by
means of the field model.

The phenomenological approach was used to describe fluid dynamics. In this
approach, the fluid is treated as a non-conducting continuum of properties determined
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by density r, dynamic viscosity y and magnetic permeability m (Bird et al., 1960;
Verardi and Cardoso, 1998). In the hydrodynamic model, the laminar flow of a
non-compressible fluid with no mass sources is investigated. It is assumed that the
gravitational forces acting on the fluid are negligible compared to the forces causing its
motion in the transducer. The motion of the liquid in the q-direction is caused by the
motion of the rotor. It is also assumed that the internal energy and temperature of the
fluid are constant. For such conditions, the differential equation of the motion of
the fluid may by written as (Szeląg, 2002)

›

›r

y z

l

›f

›r

� �
þ

›

›z

y z

l

›f

›z

� �
¼

r

l

›f

›t
: ð3Þ

Here f ¼ 2prvq; where vq is the component of velocity v in the q-direction, r is the
fluid density and y z is the equivalent dynamic viscosity of the fluid.

The description of the problem in equation (3) should be completed by non-slip
boundary conditions vq ¼ rv and vq ¼ 0 on the surface of the rotor and the frame,
respectively, where v is the angular velocity of the rotor.

In order to determine the equivalent dynamic viscosity of the fluid, physical
properties of the fluid were considered. MRFs belong to the non-Newtonian group of
fluids. The properties of such fluids can be described by the Bingham model (Bird et al.,
1960; Nouar and Frigaard, 2001). A typical characteristic family t ¼ t ðD;BÞ for a
one-dimensional fluid model is shown in Figure 3, where D is the velocity of
deformation. The fluid behaves like a solid body for t # t0ðBÞ; and like a body of
plastic viscosity hp for t . t0ðBÞ; hp ¼ tgðbÞ (Figure 3). In the elaborated
two-dimensional model of a magnetorheological fluid, the equivalent dynamic
viscosity of the fluid is used (Szeląg, 2002)

y z ¼ hp þ t0ðBÞ=kDk for kt k . t0ðBÞ; ð4aÞ

y z ¼ 1 for kt k # t0ðBÞ: ð4bÞ

The yield stress t0(B) in equation (4) is determined on the basis of the distribution of
the magnetic flux density B obtained from equations (1) and (2). The norms kDk; kt k
of the deformation tensor D and of the stress tensor t can be expressed as (Nouar and
Frigaard, 2001; Szeląg, 2002)

Figure 3.
The shear stress in MRF
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kDk ¼
1

2

X2

i¼1

X2

j¼1

D2
i; j

 !1=2

; kt k ¼
1

2

X2

i¼1

X2

j¼1

t2
i; j

 !1=2

; ð5aÞ

where

Di; j ¼ 0 for kt k # t0ðBÞ; ð5bÞ

D ¼ 0:5 7v þ ð7vÞT
� �

for kt k . t0ðBÞ; ð5cÞ

ti; j ¼ ðhp þ t0ðBÞ=kD kÞDi; j for kt k . t0ðBÞ: ð5dÞ

When analysing the performance of a MRF electromechanical brake, equations (1)-(3)
describing the electromagnetic and hydrodynamic phenomena must be solved together
with the equation of dynamics of its movable elements. This equation has the following
form

J b

dv

dt
þ Tb þ T0 ¼ Tz ð6Þ

where Jb is the moment of inertia; Tb is the braking torque associated with the
occurrence of magnetic field in the brake, T0 is the braking torque produced in the
brake when magnetic field is absent and Tz is the driving torque.

The braking torque Tb can be determined using the equation

Tb ¼
s
trðtq þ teqÞ ds: ð7Þ

The vectors tq, teq in this equation describe the stress in the fluid and the
electromagnetic stress acting in the direction q at a tangent to the external surface of
the brake’s rotor.

5. Finite element formulation
The equations (1)-(3) and (6) are coupled through the viscosity function y z ¼
y zðB; kDkÞ; the total braking torque Tb ¼ TbðB; kDkÞ and through the boundary
condition vq ¼ rv: Therefore, these equations should be solved simultaneously.

In order to solve coupled equations the finite element method and a "step-by-step"
procedure were used (Demenko, 1994; Szeląg, 2000). The backward difference scheme
was also applied. The finite element and time discretisation lead to the following
system of non-linear algebraic matrix equations

Sn þ ðDtÞ21G 2w

2w T 2DtR

" #
wn

in

" #
¼

ðDtÞ21Gwn21

2Dtun 2 w Twn21

2
4

3
5; ð8Þ

S 0
n þ ðDtÞ21G 0

� �
fn ¼ ðDtÞ21G 0fn21; ð9Þ

where n denotes the number of time-steps, Dt is the time-step, S, S 0 are the magnetic
and hydrodynamic stiffness matrices, w;f are the vectors of the nodal potentials
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w and f, respectively, w T is the matrix that transforms the potentials w into the flux
linkages with the windings, G is the matrix of conductances of elementary rings
formed by the mesh and G 0 is the matrix whose elements depend on the dimensions of
the elementary rings and fluid density r.

Motion equation (6) is approximated by the explicit difference formula (Szeląg,
2000).

J bðanþ1 2 2an þ an21Þ=ðDtÞ2 ¼ Tz;n 2 Tb;n 2 T0; ð10Þ

where a is the position of the rotor, Tz;n ¼ TzðtnÞ; and Tb;n ¼ TbðtnÞ:
The angular velocity v of the rotor may be calculated according to the formula

vðtn þ 0:5DtÞ ¼ ðanþ1 2 anÞ=Dt: ð11Þ

The braking torque Tb,n is described by formula (7). In the considered brake the
component Bq of the magnetic flux density B is equal to zero. Therefore, in equation (7)
the component teq of Maxwell stress tensor is equal to zero.

In the presented model of coupled phenomena in the MR brake the distribution of
the magnetic field does not depend on the fluid velocity. Therefore, the algorithm for
solving equations (8)-(10) can be simplified. Instead of solving the equations (8) and (9)
simultaneously for each time step, one may first calculate the distribution of the
magnetic flux density B from equation (8) and next obtain fluid velocity distribution
from equation (9). Finally, the braking torque Tb, the angular position a and the
velocity v of the rotor can be calculated from equations (7), (10) and (11), respectively.

The primary difficulty in obtaining a numerical solution of MRF flow problem,
given by equation (9), is the existence of a surface separating the regions of sheared
and non-sheared fluid (Bird et al., 1960). The position of this surface is not known in
advance, i.e. prior to the velocity field calculation (Hammand, 2000). Utilizing the
previously described equivalent dynamic viscosity formulations eliminates the need to
track the surface separating these two flow regions and simplifies the solution. It leads,
however, to singularities since the equivalent dynamic viscosity y z attains an infinite
value in the regions where kDk ¼ 0; i.e. in the regions where the fluid behaves like a
solid body. In order to avoid such a problem, equations (4a) and (4b) are replaced by
following equation proposed by Hammand (2000)

y z ¼ hþ
to

kDk
1 2 e2mkDk
� �

ð12Þ

where m is an exponential growth parameter.
This approach has been utilized to provide a good approximation of the Bingham

fluid properties for both low and high shear stresses t. Extensive numerical
experimentation led to the establishment of m ¼ 1; 000 as high enough to obtain
accurate solutions (Hammand, 2000).

Equations (8) and (9) are non-linear. This results from the non-linear relationships
m(B), y z ¼ y zðB; kDkÞ: In order to solve these equations the Newton iterative method
was used (Besbes et al., 1996; Szeląg, 2000).

6. Results
The algorithm presented for solving the equations within the field model of phenomena
was implemented in a computer program that simulates coupled phenomena in a
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magnetorheological brake. The transients in the prototype of the electromagnetic
brake shown in Figure 1 were analysed.

The magnetic field was calculated in the whole cross-section of the brake shown in
Figure 4 while the velocity field was analysed only in the region with the
magnetorheological fluid. In the consideration it was assumed that the magnetic and
velocity fields in the region with the magnetorheological fluid were calculated using
the same mesh. The influence of the density of this mesh on the results of the
calculations was analysed. The density was increased until the difference between
the two consecutively calculated values of current or torque were observed. Finally, the
region was divided into about 23,000 triangular elements. The stopping criterion for
the Newton process was set at 1024. For one time step a few iterative Newton steps
were sufficient to solve the equation (8) describing the electromagnetic field. In order
to calculate the velocity field from equation (9) 2-15 Newton steps were required.
The length of the time step was chosen as equal to 0.00005 s.

First, the elaborated program was used to determine the electromagnetic field and
the velocity field of the fluid when constant voltage is applied to the winding of the
brake. It was assumed that the rotor’s angular velocity v equals 150 rad/s and that the
delay values for which the fluid reacts to the changes in the magnetic field are
neglected. Selected examples of the distributions of magnetic field lines and the
respective distributions of lines connecting the points with identical velocity values are
shown in Figures 4-6.

Next, transient states in a brake driven by an induction motor were analysed. The
motor was supplied from an inverter. The characteristic Tz ¼ f ðvÞ of the motor and
the braking torque T0(v) from equation (10) associated with friction were measured.
The test stand is shown in Figure 7.

A transient state associated with the supply of voltage on the field-exciting coil in
the brake was considered. It was assumed that prior to the voltage supply the angular
velocity v of the motor had been equal to 50 rad/s. The calculated torque-time TðtÞ ¼
J b dv=dt þ Tb þ T0; current-time i(t) and the velocity-time v(t) characteristics are
shown in Figure 8. The torque Tb has been calculated from equation (7).

Figure 4.
Distribution of the
magnetic field lines and
the lines n ¼ const, for
t ¼ 0.004 s

COMPEL
23,4

992



Figure 5.
Distribution of the

magnetic field lines and
the lines n ¼ const,

for t ¼ 0.05 s

Figure 6.
Distribution of the

magnetic field lines and
the lines n ¼ const for

steady state

Figure 7.
Torque measuring test

stand of the MRF brake:
brake (1), interface BETA

(2), measuring head
Mt5Nm (3), induction

motor (4) and converter (5)
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In order to verify the calculations, the driving torque Tz(t), the current i(t) and the
angular velocity v(t) were measured on the prototype of the brake. The results are
shown in Figure 9. Good concordance between the calculations and measurements was
achieved.

The results of the calculations and measurements indicate the relevance of this
simulation method in the designing process of magnetorheological brakes.

7. Conclusions
In the paper, a field model of coupled phenomena in an electromechanical brake with
MR fluid was presented. The algorithm for solving the equations of the model was
suggested. On the basis of this algorithm a computer program was written. The
program proved to be useful in simulating the transient magnetic field and the velocity
field of the fluid in magnetorheological brakes. In the analysis the non-linear properties
of materials, the eddy currents induced in solid elements and the rotor movement were
considered.

The model of coupled phenomena shown above and the calculation software enable
a more detailed analysis of the phenomena in magnetorheological brakes than
analytical models. The approach presented in the paper is very useful in devices design
process when magnetorheological fluids are used as a working medium.

Figure 8.
Calculated torque-time
T(t), current-time i(t) and
the velocity-time v(t)
characteristics

Figure 9.
Measured torque-time
Tz (t), current-time i(t) and
the velocity-time v(t)
characteristics
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Szeląg, W. (2000), “Demagnetization effects due to armature transient currents in the permanent
magnet self starting synchronous motor”, EMF, Gent, pp. 93-4.
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Abstract The expressions of the material derivative of differential forms in the language of
vector analysis are introduced. These formulae allow us to describe naturally the electromechanical
coupling, and the coupling term appears to be a volume integral. A general approach to compute
forces is then proposed, which takes that fact into consideration. The method is applicable in 2D
and 3D with dual formulations. Numerical evidences of its efficiency are given.

1. Introduction
The existence of such a long controversy about the computation of electromagnetic
(EM) forces undoubtedly ascribes to the fact that the problem cannot be solved with the
tools of vector analysis. The mathematical analysis of this problem requires indeed to
consider a deforming body, and to apply adequately energy conservation rules to it.
The correct background to perform such operations is differential geometry (Schutz,
1980), and one needs in particular the Lie derivative. Fortunately, the final results of the
analysis can be expressed in the language of vector analysis. This gives in Section II, a
set of formulae, which must be considered as axioms, and are used in Section III to
solve the problem of the electromechanical coupling in a continuous medium. It turns
out that the fundamental representation of the electromechanical coupling term has the
form of a stress-strain product, where the Maxwell stress tensor plays by definition the
role of the stress. This leads, in Section IV, to a new approach for the computation of
EM forces, which is more clearly backed by the theory.

2. Lie derivative and material derivative
Let M be a continuous set of points and ut (X), X[ M, t [ [a,b ] be the trajectory of
point X in an Euclidean space E. The set of trajectories of all points in M defines a flow.
We call placement the map
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pt : X [ M 7! utðXÞ [ E; t [ ½a; b�: ð1Þ

The flow, which is entirely defined by the placement map, is assumed to be smooth and
regular enough to be differentiable and invertible when required.

The velocity v at point x ¼ utðXÞ is the vector tangent to the curve ut (X). It is
defined by

v ¼
›

›t
utðXÞ

and belongs to Tx E, the set of all vectors anchored at point x. The velocity field is the
set of tangent vectors to all trajectories of the flow at a given instant of time.

The notions of length and angle are defined in E by means of the metric

g : v;w [ TxE 7! gðv;wÞ ¼ gijv
iw j [ R ð2Þ

which, at each point x, associates a number to any pair of anchored vectors. An
Euclidean space is characterised by gij ¼ dij:

Let us now consider a small piece of curve in E. As each point of the curve
follows its own trajectory, the curve deforms, i.e. it changes in length, orientation,
curvature, etc. But the so-called vectors, which are by definition the vectors tangent
to all curves in E, are also transformed by the flow, and so is it as well in general for
all tensors. All required information to describe that transformation, called
convection, is actually contained in the placement map pt. So a tensor field T
becomes ptþdtðp

21
t TÞ at time t + dt by the only effect of flow convection. If now

T – ptþdtðp
21
t TÞ; the tensor field has got a non-zero derivative along the flow. The

Lie derivative of the tensor field £vT (Schutz, 1980) is precisely that derivative along
the flow. It is defined by

£vT ¼
dt!0
lim

pt p21
tþdtT

� �
2 T

dt
: ð3Þ

Finally, if the tensor field T depends also on time, the material derivative is
defined by:

LvT ¼
›T

›t
þ £ vT; ð4Þ

where a notation with the velocity field explicitly mentioned has been prefered in
order to remind that the material derivative depends on the flow.

Differential geometry provides the rules to compute the material derivative and the
material derivative of any tensor field, and in particular of the differential forms
(Bossavit, 1988; Schutz, 1980), which are the particular tensor fields we need in this
paper. In a three dimensional space, there exist four kinds of differential forms called
p-forms, p ¼ 0; 1; 2; 3; which all have a specific expression of the material derivative,
i.e.

Lvf ¼
›f

›t
þ vk ›f

›xk
ð5Þ
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ðLvhÞi ¼
›hi

›t
þ vk ›hi

›xk
þ

›vk

›x i
hk ð6Þ

ðLvbÞi ¼
›b i

›t
þ vk ›b i

›xk
2 bk

›v i

›xk
þ b i ›vk

›xk
ð7Þ

Lvr ¼
›r

›t
þ vk ›r

›xk
þ r

›vk

›xk
ð8Þ

respectively, for the 0-forms (e.g. a scalar function), the 1-forms (e.g. the magnetic field),
the 2-forms (e.g. the induction field) and the 3-forms (e.g. the energy density). With
obvious definitions, this can be written with more concise notations

Lvf ¼ _f ð9Þ

Lvh ¼ _h þ ð7vÞ · h ð10Þ

Lvb ¼ _b 2 b · ð7vÞ þ b trð7vÞ ð11Þ

Lvr ¼ _rþ trð7vÞr ð12Þ

where _z denotes the total derivative of z(t, x k), obtained by applying the chain rule,
component by component if z is a vector field. Finally, the material derivative allows us
to compute the time derivative of integrals over moving domains:

d

dt

Z
V

r dV ¼

Z
V

Lvr dV: ð13Þ

3. Maxwell stress tensor
In an electromechanical problem, the variation of the EM energy functional is not equal
to the variation (in the sense of change) of the EM energy stored in the system. One
misses indeed the work WEM done by the EM forces. Let the EM energy density rC of
an electromechanical system V be a known function of the induction field b. By means
of the formulae (9)-(13) and the classical chain rule of derivatives, the time derivative of
the EM energy C writes

_C ¼

Z
V

Lvr
C ¼

Z
V

ð _rC þ trð7vÞrCÞ ¼

Z
V

›rC

›b
· _b þ trð7vÞrC

� �

¼

Z
V

›rC

›b
·Lvb

� �
þ

Z
V

b ·7v ·
›rC

›b
2 trð7vÞ

›rC

›b
· b 2 rC

� �� �
:

ð14Þ

The first term at the equation (14) is the definition of the change in stored EM energy
and the second term is the mechanical power _WEM received by the EM system.

A similar calculation for the EM coenergy F gives

_F ¼

Z
V

›rF

›h
·Lvh

� �
2

Z
V

›rF

›h
·7v · h 2 trð7vÞrF

� �
ð15Þ
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where the first term at the rhs is the change in stored EM coenergy and the second term
is 2 _WEM:

One can now notice that _WEM does not involve the velocity field v itself but only its
gradient Lv. The Maxwell stress tensor is by definition the dual of the latter:

_WEM ¼

Z
V

sEM : 7v: ð16Þ

Simple calculations give

sEM ¼ b
›rC

›b
2

›rC

›b
· b 2 rC

� �
I ð17Þ

sEM ¼
›rF

›h
h 2 rFI ð18Þ

where I is the identity matrix, respectively, for the formulations in b and in h. Note the
use of the dyadic (undotted) vector product ðvwÞij ¼ v iw j and the tensor product
a : b ¼ aijbij:

It should be carefully noted that the Maxwell stress tensor sEM is defined as a true
mechanical stress, i.e. its work is delivered by the mechanical system and received by
the electromagnetic system. On the other hand, the EM forces defined by r f ¼ divsEM

are magnetic forces. Their work is delivered by the electromagnetic system and
received by the mechanical system. This should be clearer after integrating equation
(16) by part: Z

V

sEM : 7v ¼ 2

Z
V

rf
EM · v þ

Z
›V

n ·sEM · v ð19Þ

with ›V the boundary of V and n the exterior normal to ›V. Moreover, being defined
as the EM energy dual of 7v at the local level, the Maxwell stress tensor can, as such,
directly play the role of an applied stress in the structural equations of the system

divðsþ sEMÞ þ r f ¼ 0; ð20Þ

which is easier than coupling through the EM forces rEM, since the latter are singular
at material interfaces.

4. The eggshell approach
Let us consider a system V with a piece Y that can move in the aperture of a C-core X,
not completely represented here. An eggshell shaped region S is defined, that encloses
the moving piece (Figure 1) and whose thickness need not be constant. The region Z is
defined such that X < Y < S < Z ¼ V; Z and S only contain air. The problem is now
how to compute the EM forces on Y. The natural mechanical unknowns of this problem
are the velocities v (or equivalently the displacements) at all nodes of the region Y. We
have seen however that the coupling term equation (16) involves a velocity field, virtual
or not, defined on the whole study domain V. We must thus first understand the role
played by the velocity field v in V2Y. For the sake of simplicity, X and ›V are
assumed rigid and fixed, i.e. we are only interested in the forces on Y. We have then
from (19)
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Z
V2Y

sEM : 7v ¼ 2

Z
›Y

n ·sEM · v; ð21Þ

because v ¼ 0 on X < ›V (clamped rigid parts) and rf
EM ¼ 0 in Z < S (air). This

means that the contribution of the exterior of Y to the coupling term is completely
determined by the value of the velocity field on its boundary ›Y. Consequently, the
velocity field v is arbitrary in the interior of Z < S; but it must connect continuously
with v on ›Y, which is not zero. The velocity field blurs thus necessarily out of the
moving region. The idea of the eggshell approach is to set the velocity field to zero in Z,
confining the non-zero velocity field in the shell S, and of course in Y.

Let us now state that the moving piece Y is rigid and shifted by an infinitesimal
displacement du. The only region that deforms is S. The (virtual) velocity field
associated with that deformation, and its gradient are

v ¼ g d _u; 7v ¼ 7g d _u; ð22Þ

where g is any smooth function whose value is 1 on the inner surface of the shell and 0
on the outer surface. Using (16), one can write

_WEM ¼ 2F · d _u ¼

Z
S

sEM : 7v dS; ð23Þ

where F is the resultant force on Y, and finally, using equation (22), one gets

F ¼ 2

Z
S

sEM ·7g dS; ð24Þ

which is the eggshell formula for the EM resultant force on a rigid body. Only the
Maxwell stress tensor of empty space is required here. The formula applies in 2D and
in 3D. It applies also directly to dual formulations, provided one uses equation (17) for
the b-formulation and equation (18) for the h-formulation. The eggshell formula can be
seen as a generalized variant of Arkkio’s formula for torque in electrical machines
(Arkkio, 1987). The Coulomb’s technique to compute nodal EM forces (local derivative
of the Jacobian, Coulomb, 1983) can also be considered as the independent application

Figure 1.
Geometry of the c-core
and detail of the mesh in
the airgap
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of the eggshell method to the different nodes of a mesh, the support of a node-based
shape function being the eggshell around that node. At the limit for an infinitely thin
shell, one finds back the classical result that the resultant EM force on a rigid body is
given by the flux of the Maxwell stress tensor through an enclosing surface.

The eggshell formula for rigid body movement is tested in 2D on the C-core problem
(Figure 1). The moving piece Y (3£ 4 mm) is inserted in the magnetic core X, leaving an
airgap of 0.4 mm on both sides. The magnetic horizontal force tends to bring the
moving piece back in alignment with the C-core. The problem is solved with dual finite
element formulations, so as to check the accuracy of the computed fields and forces,
(Figure 2). The constitutive law b ¼ mðjhjÞh with

mðhÞ ¼
a þ mfix if h # hfix

a þ 1
d hþc

if h . hfix

8<
: ð25Þ

with c ¼ 1=mfix 2 dhfix; is representative of a saturable material and has the technical
advantage that it can be inverted, i.e. h can be expressed as a function of b, and the
(co)energy functionals can be integrated analytically. The parameters were set to
mfix ¼ 7:55 £ 1023; hfix ¼ 103:35; a ¼ 1:5 £ 1025 and d ¼ 0:625 (all quantities in SI
units).

In Figure 3, the global forces computed with the eggshell formula (24) are compared
with the forces computed by a direct differentiation of the EM (co)energy, using a
second order finite difference scheme for the derivative. A perfect match is observed,
which shows the validity of the eggshell approach. The eggshell formula however,
requires only one solution of the system whereas direct differentiation requires several
solutions, with slightly changed positions of the moving body. The difference between
the values computed with the b-formulations and with the h-formulation are due to the
discretisation error. For variational consistency, it is better not to mix fields from

Figure 2.
Energy C, coenergy F

and complementary
energy

R
Vb · h dV2F as

a function of the number of
nodes. The difference

between energy and
complementary energy is

a measure of the global
discretisation error
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different formulations when evaluating the Maxwell stress tensor, i.e. for instance, not
to mix the h field from a h-formulations with the b field from a b-formulations,
although this may seem a good idea from the point of view of the individual accuracy
of the different fields. Figure 4 shows indeed that the forces computed with the mixed
expression

sEM ¼ b h 2
b · h

2
I

are less accurate.

Figure 3.
Comparison of the
horizontal forces
computed with the
eggshell method and the
direct derivation of energy
(b-formulation) or of
coenergy (h-formulation)

Figure 4.
Effect of a variational
inconsistency
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The eggshell approach gives a certain freedom in the definition of the shell. This is one
of its advantages. The shape is actually free and the shell needs not be in contact with
the moving piece. The effect of the thickness of the shell and of the distance between
the moving piece and the shell are shown at Figures 5 and 6, respectively. One sees that
a better accuracy is obtained if the shell is not placed directly in contact with the
magnetic moving piece, because of the singularity of EM fields at material corners.
Another way to define the eggshell is to select all finite elements in V2 Y that have at
least one node on ›Y. The g function is then the sum of the shape functions of the
nodes of ›Y.

Figure 5.
Effect of the thickness

of the shell

Figure 6.
Effect of not placing the
shell in contact with the

ferromagnetic moving
piece
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This way of defining the eggshell has been used in 3D to compute the deformation of a
rectangular magnetic frame, of which by symmetry only one quarter was modelled
(Figure 7).

Let Y be the deforming piece. The weak form of equation (20) can be writtenZ
Y

s : 7v0 þ

Z
V

sEM : 7v0 þ

Z
Y

r f · v0 ¼ 0 ;v0 ð26Þ

so as to make explicit use of the coupling term equation (16). As the trial functions v0

are the shape functions of the nodes of Y, the integration of the coupling term can be
limited to Y< S, where the egsshell S is the set of all finite elements in V2 Y that
have at least one node on ›Y. In this case, the eggshell approach allows a very
straightforward implementation of an electromechanical problem. It avoids to compute
the trace of sEM on ›Y, making benefit of the existing magnetic mesh outside the
deforming piece

5. Conclusion
The Lie derivative and the material derivative of differential forms have been
introduced, in the language of vector analysis. They allow us to determine the
fundamental form of the electromechanical coupling term in continuous media. The
eggshell approach is based on that particular form and the classical methods to
compute EM forces (Arkkio’s method, Coulomb’s method, integration of Maxwell
stress tensor on an enclosing surface, . . .) are particular cases of it. However, the
eggshell approach is more directly and more clearly linked with the underlying energy
considerations at the continuous and at the discrete level, for rigid and non-rigid

Figure 7.
Eggshell around a quarter
of the rectangular
magnetic frame, and
deformed state
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movements. This makes this approach easier to understand and to implement in a
finite element program.
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Abstract The sliding-surface and moving-band techniques are introduced in frequency-domain
finite element formulations to model the solid-body motion of the rotors in an cylindrical
machine. Both techniques are compared concerning their feasibility and computational efficiency.
A frequency-domain model of a capacitor motor is equipped with a sliding surface and compared
to a transient model with moving band. This example illustrates the advantages of frequency-domain
simulation over transient simulation for the simulation of steady-state working conditions of
electrical machines.

1. Introduction
One of the most important design criteria for electrotechnical devices is given by their
characteristics for steady-state operation. Properties such as, efficiency, produced
torque, magnitude of the effective current, harmonic contents of currents and voltages,
temperature rise at nominal operation are examined prior to fine tuning the design
towards characteristics of secondary importance. The nominal operation mode of almost
all electrical energy transducers is an operation at steady-state, i.e. periodically changing
currents, voltages, speed and torque. For the numerical simulation of such conditions,
frequency-domain formulations may be advantageous over transient formulations,
especially when only a small number of a priori known significant time-harmonic
components are expected. Standard static and time-harmonic approaches are commonly
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applied to particular transformer and motor models. Neglecting the influence of higher
harmonics, introduced by e.g. ferromagnetic saturation, non-linear loads, power
electronic equipment and moving parts, is however, only acceptable in specific cases.
The increasing machine performance and the application of inverters necessitates to
account for higher harmonic effects in the simulations. A multi-harmonic approach
meets this requirement by considering a set of harmonic components at predefined
frequencies (Yamada et al., 1989). The higher harmonics introduced by saturation
and switching devices can be considered as illustrated by transformer examples.
The application of the frequency-domain approach to models with moving parts,
e.g. electrical machines, is not straightforward (Vandevelde et al., 1994; Vinsard and
Laporte, 1994). The Lagrangian approach which is commonly applied for transient,
motional eddy current simulation, ties different coordinate systems to each of the solid,
moving or non-moving bodies. The continuity of the magnetic field is enforced by e.g. a
moving-band approach (Davat et al., 1985) or a sliding-surface technique (Rodger et al.,
1990). Although these techniques are well-established in transient simulation schemes,
their application in frequency-domain formulations still causes numerical
inconveniences. In this paper, the moving-band and sliding-surface techniques are
introduced in frequency-domain finite element (FE) models and compared for their
efficiency.

2. Multi-harmonic simulation
A comparison is set-up for a 2D frequency-domain FE model of a rotating machine,
using the magnetodynamic formulation:

2
›

›x
n
›Az

›x

� �
2

›

›y
n
›Az

›y

� �
þ s

›Az

›t
¼ J s ð1Þ

in terms of the z-component Az of the magnetic vector potential with n the reluctivity,
s the conductivity and Js the source current density. The coordinate system at the
stator is denoted by (x, y) or in polar coordinates (r, u). The coordinate systems at the
rotor, i.e. (x 0, y 0) and (r, u 0), are related to those at the stator by u 0 ¼ u2 vmt with vm

the constant angular mechanical velocity.
The frequency-domain FE technique applies a twofold weighted residual approach

together with a twofold discretisation, i.e. a spatial discretisation of a domain V by a
linear independent set of nfe FE shape functions aj(x, y) and a time discretisation at a
temporal domain Y over the time period T by an orthonormal set of nhm harmonic
functions Hq(t) (Gyselinck et al., 2002). The harmonic functions are chosen from the set
{1;

ffiffiffi
2

p
cosðvqtÞ;2

ffiffiffi
2

p
sinðvqtÞ}; where 1 represents the DC components and vq belongs

to a set of a priori chosen electrical pulsations which are multiples of the fundamental
pulsation vfund ¼ 2p=T: The combined shape functions aj(x,y)Hq(t) are basis functions
for the product space combining both approximation spaces. The discretisation of the
magnetic vector potential reads:

Azðx; y; tÞ ¼
Xnfe

j¼1

Xnhm

q¼1

uj;qajðx; yÞHqðtÞ: ð2Þ

The application of the Ritz-Galerkin technique, i.e. the weighing of the partial
differential equation (1) with Az discretised by equation (2) results in the system of
equations:
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Ku ¼ f ð3Þ

where

K i; p; j; q ¼

Z
V

Z
Y

nHpHq7ai ·7aj þ sHp
dHq

dt
aiaj

� �
dt dx dy;

f i; p ¼

Z
V

Z
Y

J saiHq dt dx dy:

ð4Þ

The particular choice of harmonic functions Hq as the temporal shape functions
characterises the frequency-domain approach. Because of the fact that temporal shape
functions are orthonormal in Y, the system matrix K has a block diagonal structure
when the equations are ordered according to the spatial shape functions first.

3. Machine model
The stator and rotor domains Vst and Vrt are treated independently. Different sets of
temporal harmonics are allowed for both domains. The frequency-domain FE
discretisation reads:

Kstust ¼ fst; ð5Þ

Krturt ¼ frt: ð6Þ

When a sliding-surface technique is applied, the stator domain Vst and the rotor
domain Vrt share the common circular interface G ¼ Vst >Vrt in the air gap of the
rotating device (Figure 1). When constructing equations (5) and (6), independent
degrees of freedom are considered at the stator and rotor sides of G. In case of the
moving-band approach, a single layer of finite elements is constructed in a small
circular domain Vmb, situated in the air gap of the machine between Vst and Vrt

(Davat et al., 1985). The connection between the inner boundary of the stator and the
outer boundary of the rotor is discussed in the following sections.

The distribution of the magnetic vector potential at a circle in the air gap can be
decomposed in a sum of rotating waves:

uðu; tÞ ¼
p

X
k

X
up;k cosðvpt 2 lku2 fp;kÞ ð7Þ

where vp, lk and fp,k denote the pulsation, the pole-pair number and the phase of the
wave and up,k are unknown coefficients. An observer attached to the rotor experiences
the air-gap field:

Figure 1.
(a) Sliding-surface, and
(b) moving-band
techniques, for an
electrical machine model
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u0ðu 0; tÞ ¼
p

X
k

X
up;k cosð ~vp;kt 2 lku

0 2 fp;kÞ; ð8Þ

i.e. a linear combination of waves with the same pole-pair numbers and phases, but at
the slip pulsations ~vp;k ¼ vp 2 lkvm: Hence, the selection of the set of harmonics to be
considered at the rotor, not only depends on the harmonics present in the stator but
also on the spatial-harmonic contents expected for the air-gap field, e.g. the higher
harmonics introduced by the winding scheme and those due to the slotting of stator
and rotor.

4. Sliding-surface technique
Several sliding-surface techniques can be distinguished based on the choice of method
for enforcing the continuity at the common interface. In general, the stator and rotor
meshes at G do not match for all positions attained during the time integration.
Hence, the field at one of the both sides has to be interpolated (Perrin-Bit and Coulomb,
1995) or mortar-projected (Rodger et al., 1990) on the mesh of the other side. A third
non-matching mesh treatment which is particularly efficient for rotating devices, is a
mortar-element method with harmonic test functions as proposed in De Gersem and
Weiland (2003). This approach is particularly suited in case of a frequency-domain FE
formulation and is favoured here.

The continuity of the magnetic vector potential at the sliding surface is enforced by
weighing the difference between the magnetic vector potential at G with the spatial
harmonic test functions jk;pðu; tÞ ¼ GkðuÞHpðtÞ

where

GkðuÞ [ {1;
ffiffiffi
2

p
cosðlkuÞ;2

ffiffiffi
2

p
sinðlkuÞ} ð9Þ

and lk [ N: The resulting constraint equation is:

Bstust 2 Brturt ¼ 0 ð10Þ

where

Bst; k; p; j; q ¼

Z
G

Z
Y

ajðuÞHqðtÞGkðuÞHpðtÞ du dt;

Brt; k; p; j; q ¼

Z
G

Z
Y

ajðu
0ÞHqðtÞGkðu

0 þ vmtÞHpðtÞ du 0dt:

The constraints are added to the formulation using a set of Lagrange multipliers z,
resulting in the saddle-point model:

Kst 0 BH
st

0 Krt 2BH
rt

Bst 2Brt 0

2
6664

3
7775

ust

urt

z

2
664

3
775 ¼

fst

frt

0

2
664

3
775: ð11Þ

If a sliding surface is applied at a circular interface with an equidistant grid, the
computational cost of the operators Bst and Brt can be reduced considerably by
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weighing the magnetic vector potential at a discrete set of points, e.g. at the FE vertices
at G ( De Gersem and Hameyer, 2002). Then, the discretisation is no longer conforming,
but the integrations in equation (11) can be rearranged such that the fast Fourier
transform ( FFT) can be applied F instead of the dense matrices Bst and Brt, for each
temporal harmonic separately:

Bst; p; q ¼ dpqF ð12Þ

Brt; p; q ¼ RpqF ð13Þ

where Rk;p;k;q ¼ 1 if vp ¼ vq 2 lkvm; i.e. if the pulsation vp at the rotor side matches
the slip pulsation introduced by the air-gap wave with pulsation vq and pole pair
number lk. The approach with the FFT does not account for the curvature of G and the
exact distribution of the magnetic vector potential between the FE vertices at G. This
approximation is, however, acceptable for many machine models as long as a sufficient
fine discretisation is constructed at G.

5. Moving-band technique
A moving-band Vmb is a small circular domain, situated in the air gap of the machine in
which a single layer of FEs is constructed (Davat et al., 1985 and Demenko, 1996)
(Figure 1). The moving band is remeshed for every angular position. Hence, the supports
of the spatial FE shape functions in the moving band change depending on the position.
The contributions of the elements of Vmb read, e.g. for i [ Vst and j [ Vrt;

Kmb;st;rt;i;p; j;q ¼

Z
Vmb

Z
Y

nHpðtÞHqðtÞ7aiðx; yÞ ·7ajðx
0; y 0Þ dt dx dy: ð14Þ

Since the relation between the coordinate systems (x,y) and (x 0,y 0) and the overlap of the
supports of two spatial FE shape functions ai(x,y) and aj(x

0,y 0) depend on the velocity
and time, the contributions of elements of Vmb to the stiffness matrix result in a full
coupling between all harmonics (Gyselinck et al., 2003). The combined system of
equations is:

Kst þ Kmb;st;st Kmb;st;rt

Kmb;rt;st Krt þ Kmb;rt;rt

" #
ust

urt

" #
¼

fst

frt

" #
: ð15Þ

6. Comparison between moving-band and sliding-surface approaches
6.1 Computational complexity
In case of a multi-harmonic formulation, the stator-rotor coupling gives rise to
additional dense matrix parts or to dense constraint equations, both when using the
moving-band technique or the sliding-surface approach. This is the main drawback for
multi-harmonic formulations compared to transient formulations. The number of
FE vertices at G scales as

ffiffiffiffiffiffi
nfe

p
: The computational complexities of the individual

components of the system matrix components are gathered in Table I. The dense
matrix pats Kmb, Bst and Brt have the same complexity as the multi-harmonic FE
system matrices Kst and Krt themselves and, hence, may lead to a substantial increase
of the computational cost of the algorithm. When the FFT-variant of the sliding-surface

COMPEL
23,4

1010



technique is applied, the asymptotical complexity of Bst and Brt remains below the one
of Kst and Krt. Hence, the stator-rotor coupling does not kill the numerical efficiency of
multi-harmonic simulation.

6.2 Applicability
The moving-band technique also applies to models with more sophisticated motion
patterns. The sliding-surface technique with harmonic test functions is restricted to
circular interfaces or to integer parts of them. An efficient implementation of the
sliding-surface technique moreover requires an equidistant mesh at the interface
in the air gap. The construction of generally applicable preconditioners for the systems
augmented with sliding-surface constraints is cumbersome (De Gersem et al., 2003).

6.3 Discretisation error
The moving-band technique yields conforming, variational formulations, i.e. the FE
meshes match in the air gap and a constrained FE test and trial space is used for
the magnetic vector potential. For the sliding-surface technique with FFTs, the
discretisation is not matching at G and a saddle-point system is attained.
The additional discretisation error introduced at G is acceptable for the models
considered here.

6.4 Non-propagated harmonic components
A wave component at pulsation vp and pole-pair number lk induced by the stator in
the air gap, corresponds to a wave at pulsation vq ¼ vp 2 lkvm and pole-pair number
lk observed by the rotor. A non-propagated harmonic components arises when either
the component at pulsation vp is not considered at the stator or the component at
pulsation vq is not considered at the rotor. The question arises which boundary
conditions are inherently applied for these components in the air gap. Here, an
important difference between the sliding-surface and the moving-band techniques is
observed. In case of the moving-band approach, a wave component which is considered
at the stator but not at the rotor vanishes at the boundary between the rotor and the
moving band. Similarly, a component introduced by the rotor vanishes at the boundary
between the stator and the moving band. Hence, non-propagated components
experience homogeneous Dirichlet conditions at one of the boundaries of the moving
band. As a consequence, the moving-band technique as presented here is
flux-conservative in the air gap. In case of the sliding-surface technique presented, a
stator harmonic component which is not propagated to the rotor does not vanish at the
stator side of G. The non-propagated components experience a homogeneous Neumann
constraint at the stator and rotor sides of G. This results in a discontinuous magnetic
flux at G, even if an exact integration as in equation (10) is applied. The application of

Matrix Order

Kst, Krt nhmnfe

Kmb nhmnfe

Bst, Brt nhmnfe

Bst(FFT), Brt(FFT) nhm
ffiffiffiffiffiffi
nfe

p
log

ffiffiffiffiffiffi
nfe

p

Table I.
Asymptotic order of the

computational
complexity of the

individual system matrix
components
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homogeneous Dirichlet constraints to non-propagated flux components requires the
addition of additional constraints of the form SstFust ¼ 0 and SrtFurt ¼ 0 where Sst

selects all components with wave numbers (vp, lk) for which the corresponding slip
pulsations vq ¼ vp 2 lkvm are not considered at V rt and Srt selects all components
with wave numbers (vq,ll) for which the corresponding excitation pulsations vp ¼
vq þ llvm are not considered at Vst.

7. Capacitor motor example
Both techniques are compared for a capacitor motor induction machine. The motor has
a nominal power of 0.75 kW, a nominal speed of 2,760 rpm, a voltage of 230 V, a
nominal current of 5.2 A and a cosf of 0.96. The main winding of the motor is
connected directly to a single-phase alternating current supply whereas the auxiliary
winding is connected through a capacitor of 19.7mF. The stator has 24 slots whereas
the rotor has 16 slots. Here, as an example, the no-load behaviour of the capacitor motor
is simulated. The power supply is assumed to be a perfect sine at 50 Hz. Because of
ferromagnetic saturation, additional harmonic components are introduced at the stator
of which only the 150 and 250 Hz are considered in the frequency-domain approach.
The air-gap field of a single-phase motor is elliptical. Hence, at no-load, there is besides
the 0 Hz component, rotating synchronously to the forward rotating air-gap field, a
significant component at 100 Hz introduced by the backward rotating air-gap field.
Substantial components at 750 and 850 Hz are detected due to the slotting of the stator
and rotor. The magnetic flux distributions for the different time-harmonic components
are shown in Figure 2. The spectrum of the current through the main winding indicates
that the slot harmonics at 750 and 850 Hz are substantially more important than the
harmonics introduced by saturation (Figure 3). A transient simulation of the start-up of
the capacitor motor shows that a large number of periods have to be stepped through
before reaching a steady state, which is not necessary when using a multi-harmonic

Figure 2.
Magnetic flux plot in the
stator at: (a) 50 Hz,
(b) 750 Hz, and (c) 850 Hz;
magnetic flux plot in the
rotor at: (d) 0 Hz, (e) 100 Hz,
(f) 800 Hz, and (g) 900 Hz
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approach as is proposed in this paper. For the capacitor motor model with 24832 FE
nodes, the multi-harmonic simulation takes 16 min whereas the transient simulation
requires 5 h (Figure 4).

8. Conclusions
Multi-harmonic FE machine models require the solution of large systems of equations,
but may be advantageous over transient schemes which need to step through a
start-up process before reaching a steady state.

Figure 3.
Spectrum of the current
through the main stator

winding at no-load

Figure 4.
Current through the main
stator winding at start-up

Comparison of
sliding-surface
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Orthogonal transformation of
moving grid model into fixed grid

model in the finite element
analysis of induction machines

Andrzej Demenko and Dorota Stachowiak
Institute of Industrial Electrical Engineering, Poznań University

of Technology, Poznań, Poland

Keywords Finite element analysis, Motion, Electromagnetism, Induction machines

Abstract The equivalent fixed grid and moving grid models for the finite element (FE) analysis of
an induction machine are presented. The discussed transformation is the FE representation of the
classical commutator transformation. The obtained fixed grid model takes into account the higher
space harmonics of the flux density wave and can be used in the FE analysis of the machines with
solid rotor, drug-cap rotor, and squirrel cage winding. The models have been applied in the
calculations of TEAM Workshop problem No. 30. The test problem has been solved analytically.
The FE results and analytical results are very close.

1. Introduction
The finite element (FE) methods that consider the movement can be divided into two
categories:

(1) the techniques with the fixed grid (FG) independent of the rotor position; and

(2) the techniques with the moving grid (MG) in the rotor region (Williamson,
1994).

The MG techniques are more universal. In these techniques, the grid is divided into
two parts: the fixed part associated with the stator and the moving part associated
with the rotor. Between these parts, the slip surface or the interconnecting band is
created.

In the classical circuit analysis of electrical machines we have also two types of
techniques of movement representation. We can describe the voltage equations of rotor
windings in the moving coordinates “a,b” (a,b-model) or in the fixed coordinates “d,q”
(d,q-model) (Jones, 1967). The equations of d,q-model have been obtained by the
application of the so-called commutator transformation. This transformation is
orthogonal and linearizes the impedance matrix, i.e. eliminates functions of the rotor
angle a from the impedance matrix ( Jones, 1967).

The authors of this paper propose to apply the idea of commutator transformation
in the FE analysis of an induction machine. It has been shown that the MG model
discussed by Demenko (1996) can be transformed into equivalent FG model. The FG
and MG models have been applied for the analysis of TEAM Workshop problem No. 30
(Davey, 1998). The analytical results presented by the author of the problem have been
compared with the FE results.
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2. Moving grid model
The problem is simplified by assuming the field to be 2D, independent of the
coordinate parallel to the shaft of the machine. In order to describe the field distribution
the modified magnetic potential w has been used. This potential represents the edge
value of vector magnetic potential A and is defined as the product of core length l and
Az component of A. The MG model has been formed by the application of band
interpolation technique (Demenko, 1996). The circular band is placed inside the air gap.
The band is subdivided into FEs with a given number m of equidistant nodes or
equidistant groups of nodes (Figure 1). The trigonometric interpolating polynomial has
been applied to form the reluctance (stiffness) matrix for the band. The interpolation
is based on the discrete positions of the rotor ðai ¼ a0 þ ib; i ¼ 0; 1; 2; . . .;m 2 1;
b ¼ 2p=mÞ: The FE equations for the band can be expressed as:

Ss SbkðaÞ

ðSbkðaÞÞ
T Sr

" #
w1

w2

" #
¼

u1

u2

" #
: ð1Þ

Here Sr, Ss, Sb are the submatrices of band reluctance matrix for initial rotor position,
k(a) is the conversion matrix which project the rotor displacement, wi ði ¼ 1; 2Þ are the
vectors of nodal values of w for r ¼ ri: The vectors u1 and u2 consist of the components
related to FEs in the stator and rotor region. The conversion matrix k(a) may be
written as:

kðaÞ ¼

1k1;1 1k2;1 . . . 1ku;1 . . . 1km;1

1k1;2 1k2;2 . . . 1ku;2 . . . 1km;2

. . . . . . . . . . . . . . . . . .

1k1;v 1k2;v . . . 1ku;v . . . 1km;v

. . . . . . . . . . . . . . . . . .

1k1;m 1k2;m . . . 1ku;m . . . 1km;m

2
666666666664

3
777777777775
; ð2Þ

Figure 1.
Moving bands: (a) with
equidistant nodes, (b) with
equidistant groups of
nodes for initial rotor
position a0
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where 1 is the unit matrix of rank w, where w is the number of nodes in the group on
the boundary r ¼ r2 (w ¼ 1 for the band in Figure 1(a), and w ¼ 3 for the band in
Figure 1(b), and

ku;v ¼ ku;vðaÞ ¼
1

m

Xn

j¼0

cj cos jða2 a0 þ ðv 2 uÞbÞ: ð3Þ

Here,

n ¼ ðm þ dÞ=2; c0 ¼ 1; cj ¼ 2 ð j ¼ 1; 2; 3; . . .; n 2 1Þ; cn ¼ 1 2 d; d ¼ 1

if m is an odd number, d ¼ 0 if m is an even number. It can be seen that as a result of
displacement of angle ib the non-zero elements of matrix Sbk(a) change their position
in relation to matrix Sb.

In the FE analysis of induction motors with solid rotor or with a drug-cap rotor it is
advantage to subdivide the rotor region into the bands similar to the band shown in
Figure 1(a). For the obtained grid in the rotor region the nodal values of w can be
expressed by the subvectors w2;w3; . . .;wq related to the nodes on the concentric circles
of radius r2; r3; . . .; rq (r2 . r3 . rqÞ: Then the FE equations for the rotor region can be
written as:

S2;2 þ G2;2p S2;3 þ G2;3p . . . 0

ST
2;3 þ GT

2;3p S3;3 þ G3;3p . . . 0

. . . . . . . . . . . .

0 0 . . . Sq;q þ Gq;qp

2
666664

3
777775

w2

w3

. . .

wq

2
666664

3
777775 ¼

2ST
baw1

0

. . .

0

2
666664

3
777775: ð4Þ

Here, Si,j are the submatrices of reluctance matrix, p ¼ d=dt; Sba ¼ SbkðaÞ; and Gi,j

are the matrices of conductances associated with the nodes in the region with
conducting material.

3. Fixed grid model
Matrix k(a) is orthogonal and

kðaÞSrðkðaÞÞ
T ¼ Sr: ð5Þ

Therefore equation (1) can be transformed into the equations of FG model:

Ss Sb

ST
b Sr

" #
w1

w2f

" #
¼

u1

u2f

" #
; ð6Þ

where w2f ¼ kðaÞw2; u2f ¼ kðaÞu2 are the vectors related to the rotor part of the band
in the FG model.

In order to transform equation (4) into the equations of FG model vectors
wi ði ¼ 2; 3; . . .; qÞ should be expressed by vectors wif,

wi ¼ ðkðaÞÞTwif : ð7Þ

It can be evidenced that

Orthogonal
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pðkðaÞÞTwif ¼ V{dðkðaÞÞT=da}wif þ ðkðaÞÞTpwif

¼ ðkðaÞÞT{VðdðkðaÞÞT=daÞa¼ao
þ 1p}wif ;

ð8Þ

where V is the rotor speed. Moreover, if the moving region is subdivided into the bands
similar to the band shown in Figure 1(a) and in each band medium is homogeneous,
then

kðaÞGi;jðkðaÞÞ
T ¼ G i;j; ð9aÞ

kðaÞSi;jðkðaÞÞ
T ¼ Si;j: ð9bÞ

Therefore, as a result of transformation, we obtain:

S2;2 þ G2;2Y S2;3 þ G2;3Y . . . 0

ST
2;3 þ GT

2;3Y S3;3 þ G3;3Y . . . 0

. . . . . . . . . . . .

0 0 . . . Sq;q þ Gq;qY

2
666664

3
777775

w2f

w3f

. . .

wqf

2
666664

3
777775 ¼

2ST
bw1

0

. . .

0

2
666664

3
777775; ð10Þ

where

Y ¼ VðdðkðaÞÞT=daÞa¼a o
þ 1p: ð11Þ

In the case of the complex variable application, the transformation gives:

Ywif ) VðdðkðaÞÞT=daÞa¼a o
�wif þ jv �wif ; ð12Þ

where v is the supply angular frequency.
However, for the time-stepping method and Crank-Nicholson procedure we obtain:

ðYwif Þtn
¼

2

Dt
{ðwif Þtn

2 kðDanÞðwif Þtn21
} 2 kðDanÞðYwif Þtn21

; ð13Þ

where

kðDanÞ ¼ kða ¼ a0 þ aðtnÞ2 aðtn21ÞÞ; Dt ¼ tn 2 tn21:

The presented transformation can be applied in the FE analysis of a squirrel cage
motor. In order to obtain the FG model of the motor, the rotor region should be
subdivided into the bands similar to the band in Figure 1(b). The angle b shown in
Figure 1(b) should be equal to the rotor slot pitch angle. As a result, we obtain the FE
model with the N identical groups of elements, where N is the number of rotor slots.
The groups are related to the slot pitch regions. The FE equations of this model may be
written in the form similar to equation (4) for MG method and in the form similar to
equation (10) for FG method. Unfortunately, the obtained MG model is equivalent to the
FG model in the case of linear problems only, i.e. when, for each band, the reluctivity of
the equidistant elements is identical.

It is interesting to notice that the presented transformation gives the FG model (for
time-steeping method) similar to the model proposed by Demenko and Nowak (1996).
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The model proposed by Demenko and Nowak (1996) has been obtained by the
trigonometric interpolation of the field distribution for the successive time steps.

4. Examples
TEAM Workshop problem No. 30 has been considered, refer Figure 2 (Davey, 1998).
The reluctance matrix of MG model is a function of a. Therefore, the equations of MG
model have been solved using time-stepping method (MGDT). In the case of FG model
the complex variables are used (FGCO). The calculations have been performed for
three-phase motor and for single-phase motor. In the analysis of three-phase motor, the
well-known classical fixed grid model (FGCS) has also been applied (Williamson, 1994).
In this model all rotor quantities are assumed to vary at slip-frequency, and

Ywif ) jsv �wif ; ð14Þ

where s is the per-unit slip.
The electromagnetic torque T has been calculated from the formula presented by

Demenko (1998). For the models with complex variables, this formula gives:

T ¼ 0:25b21R �w*T
1 Sbðkða ¼ a0 2 bÞ2 kða ¼ a0 þ bÞÞ �w2f


 �
: ð15Þ

First, the influence of the position of the boundary surface on the calculated values
of torque has been investigated. It has been assumed that on the cylindrical surface of
r ¼ r5 þ Dr the radial component of flux density is equal to zero (Figure 2). The
calculations have been performed for different values of Dr. The three-phase motor has
been considered. As a result of calculation the distance Dr is assumed to be 5r5.

Figure 2.
Induction motor problem
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The considered region has been subdivided into 41 bands (16 bands in the rotor). The
bands have been subdivided into the curvilinear rectangles of b ¼ p=120: In the
time-stepping method Dt ¼ 1=ð480f Þ; where f ¼ 60 Hz:

The obtained results and analytical results (AN) for three- phase motor are shown in
Table I.

The results of FGCO and MGDT are practically the same. Moreover, these results and
analytical results (AN) are very close. The relative error of torque calculation using
FGCO and MGDT is equal to 1.27 per cent for V ¼ 400 rad=s and is less than 0.44 per
cent for the other values of speed. The error of torque calculation using classical FG
method (FGCS) is greater and is equal to 3.12 per cent for V ¼ 400 rad=s and 4.86 per
cent forV ¼ 1200 rad=s:The authors of the paper have considered the application of the
classical FG method in the analysis of single-phase motor. The electromagnetic torque of
single-phase motor has been calculated as a difference of the positive-sequence torque
and negative-sequence torque (Jones, 1967). For the analysed test problem this method
gives:

TðVÞ ¼ ðT three phaseðVÞ2 T three phaseð2VÞÞ=9: ð16Þ

Unfortunately, the results show that the method is inaccurate. Therefore, the results of
the classical FG method application are not shown in Table II. For example, the method

Rotor loss (W/m)
Speed (rad/s) Method Torque (Nm/m) Voltage (V/m/turn) Aluminium Steel

0 AN 3.825857 0.637157 1455.644 17.40541
FGCO 3.820808 0.633566 1436.245 17.40598
MGDT 3.820765 0.633563 1436.250 17.40592
FGCS 3.820808 0.633566 1436.245 17.40598

200 AN 6.505013 0.845368 1179.541 16.98615
FGCO 6.476808 0.841447 1158.734 16.90509
MGDT 6.476793 0.841446 1158.740 16.90511
FGCS 6.527325 0.841700 1141.566 16.89164

400 AN 23.89264 1.477981 120.0092 1.383889
FGCO 23.84329 1.466824 118.8809 1.365781
MGDT 23.84329 1.466824 118.8299 1.365794
FGCS 23.77079 1.467936 85.47208 1.351745

600 AN 25.75939 0.761760 1314.613 17.87566
FGCO 25.74527 0.758027 1295.322 17.81303
MGDT 25.74525 0.758024 1295.381 17.81303
FGCS 25.65684 0.759562 1248.657 17.80368

800 AN 23.59076 0.617891 1548.240 16.88702
FGCO 23.59026 0.614147 1533.020 16.90873
MGDT 23.59020 0.614143 1533.141 16.90862
FGCS 23.48954 0.615763 1475.547 16.90503

1000 AN 22.70051 0.575699 1710.686 14.32059
FGCO 22.70427 0.571828 1700.701 14.42507
MGDT 22.70417 0.571823 1700.920 14.42474
FGCS 22.59470 0.573440 1634.315 14.42665

1200 AN 22.24996 0.556196 1878.926 12.01166
FGCO 22.25611 0.552233 1874.181 12.17822
MGDT 22.25598 0.552226 1874.444 12.17861
FGCS 22.14071 0.553808 1800.045 12.18523

Table I.
Calculated values of
torque, voltage, and loss
for three-phase induction
motor, problem No. 30
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gives T ¼ 0:5202 N for V ¼ 238:761 rad=s and T ¼ 0:0876 N for V ¼ 358:1416 rad=s:
However, the results of FGCO and MGDT are satisfactorily accurate, refer Table II.

The calculations show that the zero-sequence torque T0 should be taken into
account in the analysis of the test problem. This torque is caused by the pulsating field
that has 3k ðk ¼ 1; 2; 3. . .Þ as many poles as the fundamental space harmonic of the
wave produced by three-phase system. For V ¼ 238:761 rad=s; the FGCO method
gives T0 ¼ 20:1457 N: When we add this value of T0 to the result of equation (16) we
obtain T ¼ 0:3745 N: This result and the result of analytic analysis are close, refer
result of AN in Table II.

The method can be used in the calculations of torque produced by the fundamental
space harmonic only. In the models for the fundamental space harmonic (FGCO-1h,
MGDT-1h) the band consists of three equidistant groups of nodes and b ¼ 2p=3:
For one-phase motor, these models and equation (16) give the same results of torque
calculation. In the analysis of three-phase motor using FGCO-1h or MGDT-1h the results
of torque calculation from equation (15) and from the rotor loss Pr, T ¼ Pr=ðvsÞ; are
very close.

Rotor loss (W/m)
Speed (rad/s) Method Torque (Nm/m) Voltage (V/m/turn) Aluminium Steel

0 AN 0 0.536071 341.7676 3.944175
FGCO 0 0.533353 337.5397 3.948291
MGDT 0 0.533351 337.5411 3.948281

39.79351 AN 0.052766 0.537466 341.2464 3.933111
FGCO 0.048395 0.534792 337.1410 3.937207
MGDT 0.048396 0.534671 337.1425 3.937196

79.58701 AN 0.096143 0.541495 340.4618 3.900878
FGCO 0.094419 0.538708 336.3499 3.905010
MGDT 0.094416 0.538707 336.3518 3.904998

119.3805 AN 0.143050 0.548603 340.0396 3.848117
FGCO 0.140634 0.545803 336.0284 3.852558
MGDT 0.140638 0.545802 336.0309 3.852543

159.1740 AN 0.199570 0.560074 340.2250 3.767681
FGCO 0.196318 0.557254 336.3465 3.772825
MGDT 0.196323 0.557252 336.3498 3.772806

198.9675 AN 0.275400 0.578808 339.2994 3.635357
FGCO 0.270935 0.575934 335.6122 3.641514
MGDT 0.270942 0.575932 356.6166 3.641489

238.7610 AN 0.367972 0.609649 333.6163 3.404092
FGCO 0.361721 0.606625 330.2321 3.411467
MGDT 0.361728 0.606623 330.2379 3.411436

278.5545 AN 0.442137 0.658967 317.9933 2.999715
FGCO 0.433338 0.655544 315.1379 3.009069
MGDT 0.433347 0.655542 315.1456 3.009031

318.3481 AN 0.375496 0.728552 288.0790 2.355622
FGCO 0.364385 0.724226 286.1841 2.370061
MGDT 0.364395 0.724224 286.1941 2.370015

358.1416 AN 20.0707 0.790068 256.6437 1.674353
FGCO 20.07835 0.784542 256.0160 1.698020
MGDT 20.07834 0.784540 256.0288 1.697965

Table II.
Calculated values of

torque, voltage, and loss
for one-phase induction
motor, problem No. 30

Orthogonal
transformation
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The FG time-stepping method has been successfully used in the analysis of
saturation effects in a squirrel cage motor. The results are presented in the work of
Demenko and Nowak (1996). The authors applied also the equivalent MG
time-stepping model. The difference between the obtained results and the results
presented by Demenko and Nowak (1996) is very small.

5. Conclusion
The presented transformation leads to the equivalent FG and MG FE models of
unsaturated induction machines. The MG model can be considered to be the FE
representation of the classical a,b-model. However, the FG model is the FE
representation of d,q-model. For unsaturated machine, the reluctance (stiffness) matrix
of FG model is constant. Therefore, the set of FE equations with sinusoidal forcing
functions in the time domain can be transformed into the set of FE equations with
complex coefficients (FGCO method).

The proposed FGCO method takes into account the higher space harmonics of the
wave in the air gap. Whereas well-known FG method (FGCS) ignores these harmonics.
For the considered TEAM Workshop problem the FG and MG models give the
satisfactory accurate results. The results presented by Demenko and Nowak (1996)
show that the FG time-stepping method can be successfully applied in the analysis of
saturation effects in a squirrel cage motor.
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Axisymmetric transient
electromagnetic finite-difference
scheme including prescribed

motion
M. Klocke
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Abstract A finite-difference-scheme for axisymmetric transient electromagnetic fields is
presented, which also takes into account an arbitrary prescribed motion of a substructure and
motion inductive effects arising therefrom. For the arrangement at rest transient effects governed
by the consequences of electromagnetic induction, e.g. the skin effect, are also taken into account.
The behaviour of lumped external network elements is modelled by additional equations.
A remeshing procedure is avoided by a special modelling technique. The method is tested for simple
arrangements with axial and radial, i.e. expansive motion of a rectangular ring cross-section.
Comparisons with lumped parameter analysis are carried out.

The finite-difference scheme in cylindrical coordinates
Basic considerations
The finite-difference scheme for electromagnetic fields can easily be derived from a
discretisation of integrally expressed Maxwell equations. Organisational effort in the
implementation is low due to the use of orthogonal grids.

Axisymmetric problems can usually be described in cylindrical coordinates.
Owing to symmetry all field quantities spatially depend only on the radial coordinate r
and the axial coordinate z. Current densities and vector potentials are directed only
circumferentially:

~Jðr; zÞ ¼ Jwðr; zÞ · ~ew; ~Aðr; zÞ ¼ Awðr; zÞ · ~ew ð1Þ

The magnetic field is advantageously described by a modified vector potential denoted
as F0 here, since it can be considered a flux function:

F0 ¼ r ·Aw ð2Þ

The value 2p ·F0(r, z) at a point (r, z) is the flux through a circular loop positioned
concentrically and perpendicularly to the z-axis and passing through the given point.
Flux lines are represented by lines with F0ðr; zÞ ¼ const:

In the finite-difference scheme the modified vector potentials on the nodes of an
orthogonal grid are calculated. A linear equation for the value F0

0 of the central node
and its immediate neighbours F0

1. . .4 can be derived by applying Ampere’s law on a
rectangular integration path through the middle of the grid cells as shown by the
dashed line in Figure 1. Differential quotients are replaced by quotients of differences.
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2
X4
l¼1

al ·F
0
l þF0

0

X4
l¼1

al 2 I 0 ¼ 0 ð3Þ

For the coefficients a1 and a2 the following is obtained:

a1 ¼
1

2qkðrk þ qk=2Þ

hi
mi;k

þ
hi21

mi21;k

� �
ð4aÞ

a2 ¼
1

hi

1

mi;k
ln 1þ

qk
2rk

� �
2

1

mi;k21
ln 12

qk21

2rk

� �� �
ð4bÞ

The coefficients a3 and a4 are calculated accordingly with index k2 1 in equation (4a)
and index i21 in equation (4b). Unlike Cartesian coordinates but similar to polar
coordinates like in Gottkehaskamp (1993) logarithmic expressions occur in equation
(4b) by integrating the 1/r-dependence of the source-free field strength.

Current excitation by stranded conductor windings
The nodal current I0 in equation (3) may be of different origin. In a stranded conductor
winding the total amperage Nturn · i through a given cross-section with area acs will be
distributed uniformly. So the relation between the winding current i and the nodal
current I0 for a node lying inside the cross-section is:

I 0 ¼ J · a0 ¼
N turn · i

acs

1

4

X0
Di¼21

X0
Dk¼21

hiþDiqkþDk ð5Þ

For nodes on the boundary of a winding cross-section the area a0 affected by the
current density is given only by parts of the sum occurring in equation (5). If a node
under consideration is adjacent to more than one different winding cross-sections, the
nodal current I0 is related to more than one winding current and can be expressed by a
sum, e.g. for a radial boundary as follows:

Figure 1.
Detail from orthogonal
FD-grid, five-point-star
operator defined thereon
and integrational path for
deriving coefficients
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I 0 ¼
X2
w¼1

Jw · a0;w ¼
X2
w¼1

N turn;w · iw
acs;w

1

4
hi22þwðqk21 þ qkÞ

¼ FN;0;w¼1 · iw¼1 þ FN;0;w¼2 · iw¼2

ð6Þ

The coefficients related to the winding currents result from the areal winding density
and the partial cross-sectional area of the winding adjacent to the node under
consideration. These factors are denoted by FN,0,w here, similar to the notation in
Gottkehaskamp (1993).

Voltage equations of stranded conductor windings
If not the current but the terminal voltage of the windings is prescribed, the
ohmic-inductive voltage equation implying also Faraday’s law of induction has to
be taken into account and discretised, too. The flux linkageCw is given by the average
value of the flux function F0 on the winding cross-section. A leakage flux represented
by the inductance Ls,w, e.g. for supply lines, can be taken into account additionally:

uw ¼ Rw · iw þ
d

dt
Cw ¼ Rw · iw þ

d

dt
Ls;wiw þ N turn;w

2p

acs;w

ZZ
CS;w

F0 dr dz

� �
ð7Þ

The spatial discretisation converts the areal integral into a sum, where again the
factors FN, j,w occur.

uw ¼ Rw · iw þ
d

dt
Ls;wiw þ 2p

jðCS;wÞ

X
FN; j;wF

0
j

0
@

1
A ð8Þ

Time discretisation with a time step h is carried out by using the u-method (Krawczyk
and Tegopoulos, 1993), which finally leads to:

2
jðCS;wÞ

X
FN; j;wF

0
j

������
tþh

þ
12 u

2p
h · uw

tþh

2
Ls;w þ ð12 uÞhRw

2p
iw

����
����
tþh

¼ 2
jðCS;wÞ

X
FN; j;wF

0
j

������
t

2
uh

2p
uw

t

2
Ls;w 2 uhRw

2p
iw

����
����
t

ð9Þ

u is a parameter to be chosen between 0 and 0.5, which influences the numerical
stability (Krawczyk and Tegopoulos, 1993).

Massive conductors and eddy-current phenomena
In massive conductors the current density distribution in general cannot be expected to
be uniform not depending on whether the conductor is a short-circuited ring or
a voltage supplied coil. The current driving electric field can be considered a sum of a
circumferential gradient field Eex and the induced electric field Ei. The former vanishes
for a short-circuited conductor. In the case of an externally supplied conductor it is just
the external feeding voltage uex divided by the circumferential path length 2pr.
The induced electric field results from the change rate of the flux through the loop with
radius r. For the current density these considerations lead to:
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Jw ¼ g · ðEex þ E iÞ ¼
g

r
·

uex

2p
2

d

dt
F0

� �
ð10Þ

For the nodal current in equation (3) the change rate ofF0 in equation (10) is considered
constant on the adjacent area and depending only onF0

0 in the central node. Combining
equation (3) with equation (10) under this assumption one obtains:

2
X4
l¼1

al ·F
0
l þF0

0 ·
X4
l¼1

al 2

ZZ
a0

g

r
·

uex

2p
2

d

dt
F0

0

� �
dr dz ¼ 0 ð11Þ

The integration over the adjacent area a0 results in a node assigned conductivity
coefficient Fg,0, which can be calculated as follows:

Fg;0 ¼
X1
Dk¼0

ð21ÞDk ln 1þ ð21ÞDk
qk2Dk

2rk

� �X1
Di¼0

gi2Di;k2Dk · hi2Di

2

" #
ð12Þ

Applying the u-method on equation (11) with equation (12) inserted and reordering the
expressions one obtains:

2
X4
l¼1

alF
0
l

�����
tþh

þ
Fg;0

ð12 uÞh
þ
X4
l¼1

al

 !
F0

0
tþh

2
Fg;0

2p
uex

����
����
tþh

¼
u

12 u

X4
l¼1

alF
0
l

�����
t

þ
Fg;0

ð12 uÞh
2

u

12 u

X4
l¼1

al

 !
F0

0
t

þ
u

12 u

Fg;0

2p
uex

����
����
t

ð13Þ

In contrast to stranded conductors cases with massive conductors in immediate
neighbourhood are not considered here.

Current equations of massive conducting regions
If the total current through a massive conductor im is of interest, e.g. as prescribed
course of time or in order to couple to external lumped network elements, an additional
equation for that current occurs by discretising the areal integral of the current density
from equation (10) over the conducting cross-section.

im ¼

ZZ
CS;m

g

r
·

uex

2p
2

d

dt
F0

� �
dr dz ð14Þ

The spatial discretisation results in:

im ¼
jðCS;mÞ

X
Fg; j

uex

2p
2

d

dt
F0

j

� �
¼

uex

2p
jðCS;mÞ

X
Fg; j 2

jðCS;mÞ

X
Fg; j

d

dt
F0

j ð15Þ

The sum over all conductivity coefficients of a massive conductive cross-section equals
the dc-conductance times 2p and is denoted as G0

CS;m in the following.
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Time discretisation according to the u-method finally leads to:

2
jðCS;mÞ

X
Fg; jF

0
j

������
tþh

þð12 uÞh
G0
CS;m

2p
uex

tþh

2ð12 uÞhim

����
����
tþh

¼ 2
jðCS;mÞ

X
Fg; jF

0
j

������
t

2uh
G0
CS;m

2p
uex

t

þuhim

����
����
t

ð16Þ

With this method described above arrangements at rest can be treated. As an example
for the application of the overall computation program Figure 2 shows a field map
taken 12.5ms, i.e. 50 time steps here, after turning on a dc-voltage source at the
terminals of a spiral coil made of a massive, rectangularly shaped copper wire. The coil
is covered by an aluminium plate. Field and current density distribution in the coil
cross-section are obviously strongly affected by the skin effect. The shielding effect of
the plate can also be observed.

Extension of the scheme for moving structures
For many technical purposes it is desirable to take into account moving structures like
in Bendjima et al. (1997) and Nowak (1989). However, in some special cases like, e.g.
electromagnetic sheet metal forming these conductive regions also change their shape.

The method of embedding the moving structure in the system and deriving
adequate equations for considering eddy-currents and motion inductive effects used
here is based on independent meshes for a complete base domain and an additional
moving structure layed over the base grid as shown in Figure 3.

Figure 2.
Extract from field map
computed by transient
finite-difference scheme
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The flux-function values in the nodes of the moving overlay-grid F0
M are described by

linear interpolation formulae over the values in the base grid F0
b;1 ... 4 of those four

nodes adjacent to the grid cell, the overlay node under consideration lies in:

F0
M;0 ¼

X4
n¼1

b0;n ·F
0
b;n ð17Þ

The interpolation coefficients depend on the position of the overlaid node (rM,0, zM,0)
under consideration and the adjacent base grid nodes ðrk ... kþ1; zi ... iþ1Þ as follows:

b0;n ¼
1

V 0
jrkþDk 2 rM;0jðrkþDk þ rM;0ÞðziþDi 2 zM;0Þ

with

V 0 ¼ ðrkþ1 2 rkÞðrkþ1 þ rkÞjziþ1 2 zij ð18Þ

and

Dk ¼
1 for n ¼ 1 or 4

0 for n ¼ 2 or 3

(
; Di ¼

1 for n # 2

0 for n $ 3

(

Since only short-circuited structures at motion are considered, no external voltage has
to be accounted for. The induced current densities therefore only depend on the change
rate of the modified vector potential in the overlay-grid. For each node of that grid a
current IM,0 can be calculated by approximating the areal integral, where ãM,0 denotes
an effective conducting cross-sectional area adjacent to the node. For a sufficiently fine
discretisation this effective area may be equated with the geometric area. However, an
exact integration of the nodal conductance would be possible.

iM;0 ¼ 2

ZZ
aM;0

g

r
·
d

dt
F0

Mdr dz < 2
d

dt
F0

M;0

ZZ
aM;0

g

r
dr dz

¼ 2
g

rM;0

~aM;0
d

dt
F0

M;0 ¼ 2
g

rM;0

~aM;0
d

dt

X4
n¼1

b0;n ·F
0
b;n

ð19Þ

Since the total derivative of the flux function with respect to time is evaluated, motion
inductive effects are also included here as well as those contributions resulting from
the mere time variation of the modified vector potential.

Figure 3.
Detail from orthogonal
basic FD-grid in black and
overlaid grid of a moving
structure in light gray
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In the case of motion the radial coordinate of the node as well as the effective area are
functions of time, too. Time discretisation and reordering the equation yields:

2
X4
n¼1

b0;n
tþh

F0
b;n

����
����
tþh

2ð12 uÞh
rM;0jtþh

g~aM;0jtþh

iM;0jtþh

¼ 2
X4
n¼1

b0;n
t

F0
b;n

����
����
t

þ
uhrM;0jt

g~aM;0jt
iM;0jt ¼ 2F0

M;0jt þ
uhrM;0jt

g~aM;0jt
iM;0jt

ð20Þ

Vice versa these currents induced in the overlay-grid have to be redistributed onto the
nodes of the base grid, i.e. the original right hand side of equation (2) for the
simultaneous overall solution of the system of equations. The partial contributions of
iM,0 to the nodal currents of the underlying base-grid nodes are considered dependent
on the interpolation coefficients in a reciprocal manner:

DIb;n ¼ b0;n · iM;0 ð21Þ

If in other words a matrix (b) with the coefficients b is set up and the modified
overlay-grid vector potentials collected in a vector (F0

M) are calculated by
(F0

M)¼ (b)(F0
b) with (F0

b) being the vector of the base-grid vector potentials, then the
redistributed nodal currents in the base grid are given by a multiplication with the
transposed matrix:

ðIbÞ ¼ ðbÞT · ðiMÞ ð22Þ

External lumped elements, their branch voltages and currents can be included in the
system of equations, too. Each element contributes an equation obtained as an
algebraic equation or by time discretisation of the first order differential equation
describing the behaviour of the branch element. The topology of the whole network
including stranded winding coils and massive conductors of the field model is
described by Kirchhoff’s well-known laws. Neither loop current nor node potential
methods are applied. The reducing effects are considered negligible compared to the
number of field equations.

The overlay node current equations (20) are appended as the last block in the system
of equations, the solution of which for the time step t+h is carried out directly. On the one
hand, the bandwidth of the system matrix is undesirably high for these equations
despite sparsity. On the other hand, only one overlay-grid nodal current in such an
equation occurs. Therefore unlike the usual algorithmduring the elimination process the
base-grid nodal current contributions from equation (22) in equation (3) are eliminated
by equations of type (20) first. The bandwidth of the mere field coefficient matrix (a) is
only affected negligibly by adding the linear combinations of the b-coefficients.

Test examples
Axial motion
A simple test arrangement consisting of a closed cylindrical slot with excitation coils at
top and bottom and a short-circuit ring inside the slot moving axially from the central
position towards the bottom excitation coil is investigated (Figure 4).
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From analytical reasoning the mutual inductance of the short-circuited ring to
the excitation winding MR and the self-inductance of the ring LR as well as the
resistance RR can be calculated as lumped parameters of the arrangement, which
depend on the axial position zR of the ring. Eddy-current effects are neglected in this
test-example, which can be achieved by a sufficiently but of course unpractically low
conductivity.

MR ¼ 2
2pm0

ln rex
ri

·
ðdS þ mr;YhYÞ · zRðtÞ

mr;YhY þ hS
ð23aÞ

LR ¼
pm0

ln rex
ri

·
ðmr;YhY þ hSÞ

2 2 zRðtÞ
2

mr;YhY þ hS
2

aR
3

� �
ð23bÞ

RR ¼
2p

gaR · ln
rexþriþaR
rexþri2aR

ð23cÞ

Assuming a constant imprinted exciting current Iexc one can reduce the system of two
coupled circuit equations to:

RRiR þ
d

dt
ðLRiRÞ ¼ 2I exc

d

dt
MR ð24Þ

The function zR(t) prescribed here is continuous and so is their derivative. It is given by
a period at rest of 20ms, a 10ms acceleration interval, 20ms of uniform motion, a 10ms
deceleration interval and at the end again 20ms of rest.

After the process a displacement of 24mm of the ring is achieved. With this course
the parameters as functions of time are calculated and equation (24) is solved
numerically for the ring current iR by applying the u-method on equation (24).

The problem is also treated using the finite-difference scheme. The current courses
calculated by the two methods are congruent as shown in Figure 5. Owing to the
symmetry of the arrangement at start no current in the ring is induced when turning on

Figure 4.
Test arrangement for axial
motion of short-circuit
ring

COMPEL
23,4

1030



the excitation. When the ring moves with constant speed the induced voltage is nearly
time independent and starts loading an RL-circuit represented by the short circuited
ring. The induced voltage becomes zero again at rest and the induced current starts
decreasing according to the time constant of the ring.

The field map in Figure 6 taken at 80ms shows the asymmetric flux distribution in
the core caused by the ring current field.

Radial expansive motion
The test arrangement for the radial motion shown in Figure 7 is similar to that for the
axial motion. However, it has only one exciting coil and no symmetry in the starting
position. Therefore inductive effects by the increasing magnetic field when turning on
the exciting current have to be taken into account.

A further difference is the velocity field, which is nonuniform due to the invariance of
the moving volume. Since the radial thickness aR and the circumferential length vary
with time, the ring resistance RR is also a function of time. For the inner ring contour the
same displacement characteristic as above is prescribed, but in positive radial direction.

Analytical considerations based on a stationary current density distribution with
1/r-characteristic in the ring lead to lumped parameters of the system according to
equation (25a)-(c).

The self-inductance of the excitation winding can be calculated by replacing aR by
aExc and rR by rExc in equation (25a).

Figure 6.
Field map after 80ms from
FD-computation with time

step h ¼ 0.1ms and
u ¼ 0.333 and base-grid

(light grey)

Figure 5.
Motion induced ring

current as function of time
from finite-difference time

stepping and lumped
parameter analysis
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LR ¼
pm0

hS
r2ex 2

r2R

ln 1þ aR
rR

� � 1þ
aR
rR

� �2
2

aR
rR

1þ aR
2rR

� �
ln 1þ aR

rR

� �
0
@

1
A

0
@

1
A ð25aÞ

MR ¼
pm0

hS
r2ex 2 aR

rR þ
aR
2

ln 1þ aR
rR

� �
0
@

1
A ð25bÞ

RR ¼
2p

ghRln 1þ aR
rR

� � ð25cÞ

A system of equations for two inductively coupled circuits can be set up and solved
numerically.

UExc ¼ RExciExc þ
d

dt
ðLExciExcÞ þ

d

dt
ðMRiRÞ

0 ¼ RRiR þ
d

dt
ðMRiExcÞ þ

d

dt
ðLRiRÞ

ð26Þ

Here, UExc is a dc-voltage source switched to the exciting winding at t ¼ 0; in the
present case 2,000 V. The resistance of the exciting winding is set to RExc ¼ 1V:

Unlike the former case without transformer induction at the beginning the courses
of the ring current computed by the finite-difference scheme and the lumped parameter
model slightly differ from each other as shown in Figure 8. In the lumped parameter
model a higher current at the start is calculated, which even exceeds the exciting

Figure 7.
Test arrangement for
radial expansion of
short-circuit ring
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current during a short period of time. When the ring stops again, the remaining current
is also higher than in the FD-computation. This is due to the neglection of
current-density nonuniformities.

For a better comparison a more sophisticated network model can be applied.
The short-circuited ring is subdivided into several, e.g. NR ¼ 10; cylindrical layers.
Each partial ring can then be represented by a branch of its own carrying a part of the
total ring current. From evaluating Faraday’s law of induction between partial rings in
immediate neighbourhood mesh equations are derived. In these the sum of all inner
partial ring currents and the exciting current occurs multiplied by a factor
interpretable as a leakage inductance between the rings. The sum of currents can be
considered a result of Kirchhoff’s node law. From these considerations the network
scheme in Figure 9 is derived.

Depending on the central average radii rc;1...Nr of theNR layers the resistances can be
calculated in analogy to equation (25c). For the inductances simply the differences of
the squared radii occur.

Lk ¼
pm0

hS
· r2c;kþ1 2 r2c;k

� �
; k ¼ 1; . . .;NR with rc;Nr ¼ rex

L0 ¼ LExc 2
XNR

k¼1

Lk

ð27Þ

Calculating all time functions of inductances and resistances with respect to the
nonuniform velocity and the resulting radial positions of the layers and inserting them
into the network simulation according to Figure 9 one obtains a current course, which
again is congruent to the one determined by the finite-difference scheme in Figure 8.

Figure 8.
Induced ring current as
function of time from
finite-difference time
stepping (black) and
lumped parameter

analysis (grey)

Figure 9.
Network scheme for

partial conductor analysis
of short circuited ring
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The field map in Figure 10 taken at the instant of maximum radial velocity t ¼ 40ms is
slightly disturbed in the region of the moving conductor but mostly uniform in front of
and behind the ring. The field outside the ring is weakened due to the opposite induced
current in the ring,which can be seen from the fieldmap. Since every pair of adjacent flux
lines leads the same flux, the distance of flux lines should decrease towards the outer
radius in a uniform field. But in Figure 8 the density of flux lines does not increase in the
outer region thus indicating a weaker field than in the inner region.

Relatively good agreement is also achieved for the time course of the exciting
current, which slightly varies during the expansion process (Figure 11). Again
the finite-difference computation is confirmed by the result of the partial conductor
model.

However, the graph also shows possible stability problems of the FD-scheme
presented here, as can be seen from the spurious oscillations in the computed current
courses.

Therefore further research including also remeshing strategies instead of
overlay-interpolation will be needed in order to check whether the scheme is
applicable for practical cases like electromagnetic forming, whether improvements are
necessary and possible or other methods have to be preferred.

Figure 10.
Field map after 40ms from
FD-computation with time
step h ¼ 0.1ms and
u ¼ 0.333 and base-grid
(light grey)

Figure 11.
Exciting current as
function of time from
finite-difference time
stepping (black with
oscillations), lumped
parameter two circuit
analysis (grey) and partial
conductor model (almost
congruent to FD-result but
without oscillation)
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Conclusion
A finite-difference scheme for axisymmetric problems including prescribed motion of a
substructure has been presented. Remeshing is avoided by independent grids and an
overlay-interpolation technique. The method is applied onto elementary test
arrangements with axial and radial expansive motion, which can be described by
lumped parameter analysis as a comparison. The results achieved by using these
different methods are in good agreement. However, further research concerning the
practical applicability is needed.

References

Bendjima, B., Srairi, K. and Feliachi, M. (1997), “A coupling model for analysing dynamical
behaviours of an electromagnetic forming system”, IEEE Transactions on Magnetics,
Vol. 33, pp. 1638-41.

Gottkehaskamp, R. (1993), Nichtlineare Berechnung von Asynchronmaschinen mit
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Abstract The design of multi-domain that considers all components of electromagnetic systems
such as air, iron, magnet, and coil is investigated using topology optimization, interpolation
method, and FEM. The design sensitivity equation for topology optimization is derived using the
adjoint variable method and the continuum approach. The proposed method is applied to topology
optimization of C-core actuator and shows significant improvement.

Introduction
Topology optimization is very useful for a conceptual design. The principle of topology
optimization of electromagnetic systems is the same as that of the structural system
(Bendsoe and Kikuchi, 1988). The topology optimization for the electromagnetic
systems using the density method has already been studied (Dyck and Lowther, 1996;
Wang and Kang, 2002a).

The topology optimization with two materials using the interpolation method in
micro-electro-mechanical-systems (MEMS) was studied (Sigmund, 2001). However, the
electrostatic fields were only considered as a driving force.

The topology optimization of electromagnetic systems with two materials was
studied by introducing two-step optimization (Wang and Kang, 2002b). In previous
work, the design of coil was neglected. And also, the final topologies of air and two
materials could not be obtained at the same time.

In this paper, the previous work (Wang and Kang, 2002b) is extended to the design
of multi-domain that considers all components of electromagnetic systems such as air,
iron, magnet, and coil.

To find the final topology of three phases (air, iron, and magnet) at the same time,
the interpolation method is used. But the topology optimization of coil is achieved
independently unlike other components because coil is located separately as the source
of the electromagnetic system.
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Finally, topology optimizations of coil part and other parts (air, iron, and magnet)
are carried out sequentially.

The design sensitivity expressions are analytically derived using the continuum
approach and the adjoint variable method (AVM) (Edward et al., 1986; Sigmund, 2001;
Wang and Kang, 2002a, b). The sensitivity is calculated using a commercial FEM tool,
ANSYS. The optimization routine is implemented using sequential linear programming
(SLP) in design optimization tool (DOT), which is one of the commercial optimization
codes. Then, to show the efficiency of the proposed method, the topology optimization of
the C-core actuator is solved to reduce the volume while maximizing the energy.

Theory of multi-domain topology optimization
The magnetostatic field can be described by using the set of Maxwell’s equations.

7 £ H ¼ J s; H ¼
1

m
ðB 2 m0M Þ; 7 · B ¼ 0 ð1Þ

where H, Js, B, m, m0, are the magnetic field intensity vector, the current density vector
(A/m2), the magnetic flux density vector, the permeability of material, and the
permeability of free space ð4p £ 1027Þ; respectively.

The vector M represents the magnetization vector (A/m) in the permanent magnet.
The magnetization vector is related to the coercive force and the residual flux density.

H c ¼
m0

m
M ¼

1

m
Br ð2Þ

where Hc and Br are the coercive force and the residual magnetic flux density,
respectively.

By introducing a vector potential B ¼ 7 £ A and eliminating H in equation (1),
we have a single governing equation

7 £
1

m
7 £ A

� �
¼ J s þ 7 £ H c ð3Þ

There are two forms of governing equation. One is an integral form using continuum
approach (Wang and Kang, 2002a, b).

auðA; �AÞ ¼ luð �AÞ for all �A [ A ð4Þ

auðA; �AÞ ¼
RRR

V
ð7 £ AÞ · 1

m
7 £ �A

� �
dV

luð �AÞ ¼
RRR

V
½J s· �A þ Hc · ð7 £ �AÞ� dV

8><
>: ð5Þ

where �A is virtual vector potential.
The other is a matrix form using a discrete approach.

KA ¼ Q ð6Þ

where K is the stiffness matrix which is a function of permeability, Q is the force
matrix which is a function of current density and coercive force.
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KðmÞA ¼ Q1ð J sÞ þ Q2ðH cÞ ð7Þ

Design variables are permeability, current density, and coercive force of each element
as shown in equation (8).

b ¼ f ðm; J s;H cÞ ð8Þ

Those variables must be converted to density variables by the density method for
using topology optimization. Figure 1 shows the general roles of density equations
about permeability, current density, and coercive force.

To represent the porous material, suppose a fictitious material whose properties,
like the current density Js, can be represented as a P-powered function of r1, material
interpolations for the coil part are shown in equations (9) and (10).

J s ¼ J s0
r P1

1 ð9Þ

m ¼ rP1

1 ðmcm0 2 m0Þ þ m0 ð10Þ

where Js0
, P1, mc are initial current density, power factor, and relative permeability of

coil, respectively. And r1 is a compactness variable of coil. If r1 becomes 1, the element
becomes coil; otherwise it becomes air.

And in topology optimization for the core part, material interpolations can be shown
in equations (11) and (12)

H c ¼ Hc0
r

P2

2 r
P3

3 ð11Þ

m

m0

¼ rP2

2 r
P3

3 ðmm 2 msÞ þ ms 2 1
� �

þ 1 ð12Þ

where a compactness variable r2 determines whether there is material (magnet and
iron) or air in each element, and r3 determines whether each element becomes iron or
magnet.

Design sensitivity analysis
Consider a measure of electromagnetic performance that may be written in integral
form as (Edward et al., 1986)

Figure 1.
Density equation
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c ¼

Z Z Z
V

gðA;7A; bÞ dV ð13Þ

The adjoint equation for the adjoint variable l is (Edward et al., 1986)

auðl; �lÞ ¼

Z Z Z
V

½gA
�lþ g7A7 �l� dV ð14Þ

which must hold for all admissible virtual vector potential �l [ ~A:
where �l is the virtual adjoint vector potential, ~A is the space of virtual vector

potential.
Using the variational form of objective function of equation (13) and direct

differentiation result (Edward et al., 1986), the sizing design sensitivity equation is

c 0 ¼

Z Z Z
V

½gAA0 þ g7A7A0 þ gbdb� dV

¼

Z Z Z
V

gbdb dVþ

Z Z Z
V

½gAA0 þ g7A7A0� dV

¼

Z Z Z
V

gbdb dVþ l0dbðlÞ2 a 0
dbðA; lÞ

ð15Þ

In the matrix form, general design sensitivity of an objective function is

dc

dr
¼

›c

›r
þ lT ›Q1

›r
þ

›Q2

›r
2

›K

›r
A

� �

¼
›c

›r
þ lT ›Q1

›J s

›J s

›r
þ

›Q2

›H c

›H c

›r
2

›K

›m

›m

›r
A

� � ð16Þ

Numerical example
The objective of a C-core actuator is to control a blade’s movement as shown in Figure 2
by using the attraction force. So it is important to design the magnet’s shape to
maximize the force. This design can be an optimization problem in which the force is

Figure 2.
C-core actuator
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maximized in a specific volume. Because the energy variation is equal to the force, we
can define the objective function as the magnetic energy (Wang and Kang, 2002a).

Figure 3 shows a 2D finite element model in ANSYS. There are two examples.
One is a C-core actuator with small current density of the coil, i.e. 2.0 A/mm2 (Case A).
The other is a C-core actuator with large current density, i.e. 10.0 A/mm2 (Case B).
The width of both the blade and the core is 20 mm. The length of the core and the blade
are 60 and 50 mm, respectively.

The geometry and material properties of two examples are the same except input
current density as shown in Table I. In this paper, in topology optimization, linear
material properties are used for reducing computation time as shown in Table I, but, in
reanalysis of optimized models, non-linear material properties are used for considering
the saturation of core and blade (Wang and Kang, 2002a).

The objective function of optimization is the magnetic energy in airgap and
constraints are the volume of coil and core, and a gray level indicator (Wang and Kang,
2002a).

Objective: MaxC ¼
X 1

2
ATKA

� �
ð17Þ

Constraint: g1 ¼

XNDV

k

rkV

Vr
2 1 # 0 ð0 # re # 1Þ ð18Þ

Figure 3.
2-D finite element model

Relative permeability Current density ( Js) (A/mm2) Coercive force ( Hc) (A/m)

Core 3,000 – –
Blade 3,000 – –
Coil 0.95 (Case A) 2

(Case B) 10 –
Magnet 1.05 – 951,808
Air 1 – –

Table I.
Material properties
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g2 ¼ 1 2

XNDV

k

ðrk 2 0:5Þ2

NDV · GId

# 0 ð0 , GId # 0:25Þ ð19Þ

where Vr is the total volume to remain after the topology optimization, V is the volume
of each element.

Figure 4 shows the design domain for topology optimization. In the three-domain
(air, iron, magnet) optimization, the design domain of core parts is only considered
while the design domain for coil is neglected. However, in the four-domain
optimization, the design domain for coil is considered as total area of design domain for
coil is increased about 20 percent as shown in Figure 4.

Figure 5 shows results of Case A. Three-domain means that air, steel and magnet
are considered as design domain. And four-domain means that air, steel, magnet and
coil are considered as design domain. From topology optimization, finally, the core part
consists of 50 percent air, 40 percent iron, and 10 percent magnet. Those results show
the topology optimization can give significantly improved design.

The initial magnetic energy is 0.33 J/m, and the final magnetic energy is 4.8 J/m.
Therefore, the magnetic system energy is significantly increased by adding optimized
magnet as shown in Figure 5. The magnetic force generated in blade is obtained by
reanalysis of the optimized model with non-linear material property.

Figure 6 shows results of Case B. The initial magnetic energy is 8.02 J/m, and the
final magnetic energy is 10.42 J/m. The difference of energy or force between original
and optimized model is less than that of Case A because the core is saturated due to
large current density in Case B.

Therefore, from the proposed multi-domain topology optimization, we can get the
optimized model that has suitable material ratio while saving the material cost.

Conclusion
In this paper, the topology optimization of the electromagnetic systems in
multi-domain that considers air, iron, magnet, and coil is studied. The topology
sensitivity equation is derived using the continuum approach. The multi-domain of
C-core actuator is optimized to produce maximum magnetic force under a given source

Figure 4.
Design domain
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Figure 5.
The final results of
multi-domain topology
optimization (Case A)
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Figure 6.
The final results of

multi-domain topology
optimization (Case B)

Multi-domain
topology

optimization

1043



current. Numerical examples show that multi-domain topology optimization can give
significantly improved design.
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Abstract Induction heating is widely used in the industry due to high efficiency, precise control,
rapid heating and low pollution properties. To process a semiconductor of high quality, uniform
heating is necessary, but it is not easy to heat uniformly by using the conventional induction
heating equipment. For this purpose, the zone control induction heating equipment is jointly
developed with Mitsui Engineering Shipbuilding Co., Ltd. In this paper, the optimization of current
in each coil is carried out using the finite element method and the optimization method in order to
obtain a uniform eddy current loss distribution on graphite.

1. Introduction
From the viewpoint of heating efficiency, temperature control and realization of clean
work environment, the induction heating is widely used (Mai and Henneberger, 1999).
If the induction heating technology can be improved by using the finite element
method (FEM), it will contribute to the development of the industry in this field.

For example, features such as quickness, high precision and uniform heating is
needed for semiconductor wafer used for a photovoltaic cell. In order to realize uniform
heating, it is necessary to supply the electric energy uniformly to the graphite. When
only one exciting coil is used in the induction heating, the temperature in the graphite
cannot be controlled. Then, a new technique called zone control (Figure 1) is introduced.
In this technique, the exciting coil is divided into several small coils and each coil is
connected to an independent power supply of high frequency, and the current in each coil
is controlled to realize uniform heating. However, there may be no report about the
optimization of the current and the shape of graphite for uniform heating.

In this research, the optimal design for uniform heating is performed using FEM
and the optimization method (Evolution Strategy (ES)) (Bäck, 1996; Horii et al., 2000).
The optimal shape of graphite to realize uniform heating is investigated, and
about uniform eddy current loss distribution is obtained by controlling the current in
each coil.

2. Analyzed model and optimal design method
2.1 Analyzed model
The analyzed model is shown in Figure 2. The heating coil is divided into eight zones
where the high frequency inverters are connected. The graphite is set just under the
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excitation coils and is heated by eddy losses produced by the exciting coils.
The graphite is divided into eight regions (p1-p8) as shown in Figure 2. The shape of
graphite and the currents in the eight exciting coils are changed in order to obtain the
uniform distribution of the eddy current loss in graphite. The frequency of exciting
current is 40 kHz. The eddy current is considered in the graphite, wafer, core and
exciting coils. Each material constant is shown in Table I.

2.2 Governing equation
Governing equation of eddy current problem can be described using the Maxwell’s
equation as follows:

rot
1

m
rot A_

� �
¼ J_0 2 jvsA_2 s gradf ð1Þ

where m is the permeability A_ the magnetic vector potential, J_0 the given current
density, s the conductivity and f the electric scalar potential. The dot (·) denotes a

Figure 1.
Induction heating
equipment with zone
control

Figure 2.
Analyzed model

Graphite Water Core Exciting coil

Relative permeability 1 1 32 1
Conductivity (S/m) 1.1236 £ 105 9.09£ 103 2.5£ 1022 5.0 £ 107

Table I.
Material constant
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complex variable. As the core is not saturated, the phasor method (the so-called jv
method) is applied in axissymmetric eddy current analysis by assuming that the
magnetic characteristic is linear.

2.3 Optimal design method
To achieve the uniform heating on the graphite, the optimal design is performed
using the axissymmetric FEM combined with the (1+1)-ES for searching the global
optimal solution. In this optimization problem, the amount of current supplied to
each zone ((1)-(8)) is set as design variables (Ii, i¼1-8). The constraint range of Ii is
given by

0 per cent # I i # 200 per cent ði ¼ 1-8Þ ð2Þ

Each zone consists of two coils. The amount of current Ii is optimized so that the
distribution of eddy current loss in graphite becomes uniform. Therefore, the objective
function F is defined by

F ¼
W max

W min
ð3Þ

where Wmax is the maximum eddy current loss, and Wmin is the minimum eddy current
loss of Wi ( i¼1-8) in each region p1-p8 in Figure 2.

The flow chart of optimal design method of induction-heating equipment is shown
in Figure 3. This optimization procedure of every step is explained as follows.

Step 1: decision of initial current value. The initial current value (I1-I8) of each zone
((1)-(8)) is determined. The initial value was set-up with 100 per cent in all zones.

Step 2: Step 5: calculation of objective function. The eddy current loss produced in
the regions p1-p8 of graphite is calculated by using FEM. The eddy current loss density
in the region p8 of the basic model shown in Figure 2 is normalized to unity.
The objective function F is calculated using equation (3).

Step 3: mutation. The driving force of ES is the mutation. The updating formula of
the design variable is given by:

I ðkÞ
o ¼ I ðkÞ

p þ N 8ð0;s
2Þ ð4Þ

where I ðkÞ
o is the offspring vector, I ðkÞ

p is the parent vector in the kth generation
and N 8ð0;s

2Þ is the normalized random vector consisting of eight different
normalized random numbers based on standard deviation s. The initial value of s is
set to 50.

Step 4: judgment of constraint condition. The offspring vector is judged whether
equation (2) is satisfied or not. If the offspring vector obtained at Step 3 does not satisfy
equation (2), the operation returns to Step 3.

Step 6: natural selection. The objective function of the offspring vector and the
parent vector is compared, and a smaller objective function is chosen as a parent vector
of the next generation as shown in the following equation:

I ðkþ1Þ
p ¼

I ðkÞ
p ðFp # FoÞ

I ðkÞ
o ðFo # FpÞ

8<
: ð5Þ
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where Fp is the objective function of the parent vector and Fo the objective function of
the offspring vector.

Step 7: k ¼ n?. The number of iterations n of mutation is set as 80, that is ten times
the design variable. If k is equal to n, the operation progresses to Step 8, otherwise,
return to Step 3.

Step 8: change of mutation step length. The standard deviation s is changed at every
n calculations as shown in the following equation:

s ¼

s £ 0:85 ðc , 0:2Þ

s ðc ¼ 0:2Þ

s=0:85 ðc . 0:2Þ

8>><
>>: ð6Þ

where c shows the probability of success during n searches.

Figure 3.
Optimization process
using (1 + 1)-ES and FEM
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Step 9: convergence ?. If the standard deviation s is smaller than 0.5, the optimal
design is ended. Otherwise, the operation returns to Step 3 and the same calculation is
performed.

3. Optimal design of induction heating equipment
3.1 Optimization of basic model
The current in each zone of the basic model shown in Figure 2 is optimized. While the
eddy current losses of p1 and p2 are smaller than those of other regions in the initial
state (the current I1-I8 are all the same), the loss in each region of graphite was mostly
made uniform after optimal design as shown in Figure 4. The current of each zone and
the objective function are shown in Table II. I1 and I2 are increased because the eddy
current losses of regions p1 and p2 are lower in the initial state. In order to make the
eddy current losses of regions p1 and p2 almost equal to the losses of p3-p8, the currents
of I3-I8 should be reduced. By using the optimization technique, the objective function F
is decreased from 7.3 to 1.2 as shown in Table II. The optimization of basic model took

Figure 4.
Eddy current distributions

(basic model)
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24.4 h during 2,320 iterations using PC (CPU: Intel Pentium 4 Processor 2.8 GHz,
Memory: 1.5 GB).

3.2 Optimization of modified model
By the optimization of the basic model, the eddy current loss in each region could
not be made almost uniform. Then, to make the loss distribution of the graphite
more uniform, the shape of graphite was changed based on some forward analyses.
The modified model obtained is shown in Figure 5(b). In order to make the eddy
current losses of the graphite region p1, p4 and p7 larger, the thickness of these
regions are increased compared with those of other regions. The thickness of
regions p2 and p6 are reduced compared with those of other regions in order to
reduce the eddy current loss. The thickness of regions p3 and p5 are also changed as
shown in Figure 5(b) to adjust the eddy current loss distribution. The thickness of
region p8 is made larger than those of other regions so that the leakage flux to
wafer is prevented.

The optimal current of each coil is obtained by using ES. The flux distributions at
the initial and optimal states are shown in Figure 6. Since the flux density generated at
the end of the graphite region p8 is high as shown in Figure 6(a), the eddy current loss
in the region p8 becomes large. The flux distribution becomes more uniform in the
graphite at the optimal state as shown in Figure 6(b).

Figure 7 shows the eddy loss distributions. The eddy current loss of the basic
model is more uniform than that of the basic model at initial state. By changing
the shape of the graphite, the eddy current losses of regions p4 and p7 at initial
state are increased. A considerably uniform eddy current loss distribution is
obtained after optimization in the case of the modified model as shown in

Objective Current (per cent)
Model State function F I1 I2 I3 I4 I5 I6 I7 I8

Basic model Initial 7.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Optimal 1.2 179.8 128.9 28.7 9.9 45.9 21.8 78.7 03

Modified model Initial 6.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Optimal 1.0 186.8 105.9 19.7 19.6 10.2 69.3 12.5 27.4

Table II.
Optimal result

Figure 5.
Graphite form
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Figure 7(b). As shown in Table II, the objective function F of the modified model
after optimization is smaller than that of the basic model. The total amount of
current is decreased like the case of optimization of the basic model because the
eddy current loss in each region of the initial state is considerably different from
each other. The optimization of the modified model took 27.4 h during 2,320
iterations.

4. Conclusion
It is shown that the nearby uniform distribution of eddy current loss in graphite can be
obtained by changing the shape of graphite and controlling the exciting current in each
zone.

The optimization of both shape of graphite and amplitude of exciting current of
each zone coil is a future research subject.

Figure 6.
Flux distributions

(modified model)
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Abstract The LF magnetic field (50 Hz-100 kHz) generated in the air by electrical appliances is
characterised using multipoles. The maximum likelihood estimation of an equivalent multipolar
source is computed using a genetic algorithm. The choice of the position and the number of
measurement points are discussed.

1. Introduction
The increasing number of electrical appliances in the daily life, rises the question of the
interaction of these fields with the living systems. The effects on the human health of
occasional (unwanted) exposure to the electromagnetic fields are still not well known.
For this reason, the governments have imposed some restrictions on the fields generated
in the air by electrical appliances. In the case of low frequency (50 Hz-100 kHz) magnetic
fields, these limits are defined on the basis of the currents induced into the human body.
Unfortunately, these currents are extremely weak, and a direct measurement is
impossible. The simplest model to compute these current is a 1D model (ICNIRP, 1998),
where the magnetic field is supposed to be uniform. Clearly, this is not a realistic
situation in proximity of the appliance, and by consequence the reference levels on the
field which derive from this model are too restrictive (Burais et al., 1998; Gaspard et al.,
2000). Thus, it is important to be able to characterize the fields generated in the air by
electrical appliances using experimental data. The main idea is to perform some
measurements of the magnetic field in the air, and use them to fit the parameters of an
equivalent source. This source can replace the real appliance, in the computation of the
induced currents in the human body. The simplest model of equivalent source which
has been proposed is a magnetic dipole (Yamazaki and Kawamoto, 2001; Zaffanella
et al., 1997). However, a simple dipole may be not representative enough of the field
distribution, depending upon the kind of the appliance (Salomon and O-Mun, 2001), and
on the distance from it. In this case, a multipolar source can be used. Compared to the
magnetostatic case, the main difficulty with this technique in the harmonic regime is the
need to measure both amplitude and phase (Lyon, 1994) of the magnetic field. However,
the measurement of the phase is really necessary only when dealing with rotating fields.
This paper presents an approach based on the maximum likelihood estimation (MLE) of
a multipolar source, using a genetic algorithm (GA). First, the formulation of the
problem is presented. Then, the method is tested on a simple source (a coil) using
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computer-generated data. The choice of the measurement points is discussed. Finally,
the application to a real device is presented.

2. Formulation of the problem
The simplified Maxwell equations for the harmonic, quasi-magnetostatic case (Durand,
1968) are:

~7 · ~B ¼ 0 ð1Þ

~7 £ ~H ¼ ~J ð2Þ

The air surrounding the electrical appliance is supposed to be free from currents
ð ~J ¼ 0Þ; so that the magnetic field ~H can be described using either a scalar potential c,
or a vector potential ~A:

~H ¼ 2~7c ¼
1

mo

~7 £ ~A ð3Þ

Both these potentials obeys the Laplace’s equation, and thus can be described by a
multipolar development (Lorange, 2001):

c ¼
X1
n¼1

R

r

� �nþ1 Xn

m¼2n

An;mYm
n ðq;wÞ ð4Þ

~A ¼ 2
X1
n¼1

1

n

R

r

� �nþ1

An;m~r £
~7Ym

n ðq;wÞ ð5Þ

where An;m is the coefficient of the development, R is an arbitrary distance, and
Y m

n ðq;wÞ is the spherical harmonics (available at: www.mathworld.wolfram.com/
SphericalHarmonic.html). The coefficients An;m depend upon the choice of R and the
coordinate system (i.e. the position and the orientation of the equivalent source).

2.1 Choice of R
Equations (4) and (5) hold outside the sphere of radius R. Thus, R must be large
enough, such that the appliance is contained inside this sphere. On the other hand, to
achieve an accurate characterization of the field in the air, R should be chosen as small
as possible. However, the choice of R is not crucial, in that a different choice R0 – R
leads to a simple scaling of the coefficients.

2.2 Choice of the coordinate system
The choice of the coordinate system (i.e. the centre and the orientation of the multipole)
turns out to be very important for the quality of the characterization. First, it should be
observed that the number P of the coefficients grows quickly with the order N of the
development (Table I):

From the mathematical point of view, the problem is definitely solved by the
equations (4) or (5). However, in practical applications the infinite sums in equations (4)
and (5) have to be bounded to a certain order (i.e. n # N ). It turns out that a smart

Order N ¼ 1 N ¼ 2 N ¼ 3

Coefficients P ¼ 3 P ¼ 8 P ¼ 15

Table I.
Number of coefficients
of the development

COMPEL
23,4

1054



choice of the coordinate system improves the accuracy of the fit, and avoids the
unnecessary complications dues to high-order harmonics. An explication of this fact is
that the symmetries of the system may be (implicitly) considered in the choice of the
coordinate system.

2.3 MLE of the coefficient
Assume currently that R and the coordinate system have been chosen, and that the
magnetic field ~H is measured onto a set of M points. For the sake of simplicity, assume
that the field is periodic with time, and that only the fundamental component[1] is
considered: thus, a 3D complex vector ~H is associated to each measurement point. It
can be observed that the field depends linearly upon the coefficients:

½H� ¼ ½C� · ½A� þ s 2½I� ð6Þ

where the term s 2[ I ] models a white Gaussian measurement noise, and the
coefficients and the measured values of the field are arranged into the vectors [A] and
[H], respectively. The MLE (Strang, 1986) of the coefficients ½Â� and its covariance
matrix can be computed using the well-known formulas:

½A� ¼ ð½C�H ½C�Þ21½C�H · ½H� ð7Þ

cov ½A� ¼
1

3M 2 P
ð½C�H ½C�Þ21 · ½H�H ð½I�2 ½C�ð½C�H ½C�Þ21½C�H Þ½H� ð8Þ

The number of measurement points M must be large enough for the system in equation
(7) to be over determined: 3M . P:

2.4 The optimization problem
The “core” of the method (Figure 1) consists in choosing the coordinate system in a
somehow optimal way. To this purpose, a GA (Goldberg, 1989; Takahashi et al., 2003) is

Figure 1.
Sketch of the method
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used. The parameters to be optimised are the coordinates of the centre of the source: xo,
yo, zo. The cost function j, to be minimized, is the mean square reconstruction error:

j ¼
1

M

XM
k¼1

~Hk 2
~H
ðMPÞ

k

��� ���2

ð9Þ

where ~H
ðMPÞ

k is the magnetic field computed in the kth measurement point, using the
equivalent multipole.

3. Results
First, the effectiveness of the method has been tested with a simple source (a coil).
In this case, the “measurement” data have been computed using analytical formulas
(Durand, 1968). Then, the method has been applied on real measurements from a test
device.

3.1 Application to a circular coil
The coil (radius a ¼ 40 cm; current I ¼ 1 A) is placed at the origin, the axis oriented
along the z-direction, and modelled with a third-order multipole. First, 36 measurement
points (Figure 2) have been taken on a sphere of radius 1 m. The coefficients has been

Figure 2.
The coil with the
measurement points

COMPEL
23,4

1056



first estimated when the multipole is placed at the origin (real position), at two other
arbitrary positions (case a, b – Table II), and at the position obtained with the GA.
Only the position of the coordinate system has been optimised.

First of all, one sees that the optimised location computed by the GA is very close to
the real position.

In Figure 3, the absolute values of the coefficients have been plotted. One observe that
when the location of the multipole is chosen arbitrarily (case a, b), some high-order
harmonic terms appear. These terms have no physical meaning, and are introduced only
to fit the data. Thus, the solution obtained by the GA is, in some way, the simplest one.

In order to quantify the effectiveness of the solution, we define in each point the
error criterion:

1 ¼ ~H 2 ~H
ðMPÞ

��� ���.max ~H
��� ��� · 100 per cent ð10Þ

This criterion has been computed over a sphere of radius 2 m, centred into the origin.
The maximum values of 1 obtained are: 3.3 per cent in the case (a), 44 per cent in the

Real position Case (a) Case (b) GA

xo ¼ 0 xo ¼ 0:1 xo ¼ 0:3 xo ¼ 20:0217
yo ¼ 0 yo ¼ 20:05 yo ¼ 20:3 yo ¼ 20:0090
zo ¼ 0 zo ¼ 20:030 zo ¼ 0:4 zo ¼ 0:0014

Table II.
Center of the

equivalent multipole

Figure 3.
Coefficients of the

multipole
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case (b), and 0.87 per cent when the centre is optimised. Thus, when the position of the
multipole is optimised, a better agreement is arrived with the data.

3.2 The choice of the measurement points
An important question which arises when dealing with a real appliance is where to
perform the measurements of the field. In the previous section, the measurement points
have been placed onto a sphere which surround the source of the field. This is seldom a
realistic situation, in that one may actually not be able to locate the field sensors all
around the appliance. Moreover, the effectiveness of the method has been validated a
posteriori, using a second set of data. Even if this is an unavoidable step, it is important
to have an a priori criterion about the goodness of the choice of the measurement
points. To this purpose, some other configurations of the measurement points
have been simulated. Among them, a case which has a high practical interest
(Zaffanella et al., 1997) is when the points are placed onto a straight line (Figure 4).
In this case the method fails. This result merits to be investigated more carefully.

First of all, it can be observed that the estimated values of the coefficients (Figure 5)
are meaningless: not only the order of magnitude is wrong (105 compared to 1021) but
also the dipolar character of the coil cannot be argued in any way.

Figure 4.
The measurement points
placed onto a straight line
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Most importantly, we find that the multipole fits perfectly the field in the points used for
the estimation ð1 , 1025 percentÞ; but fails utterly elsewhere ð1 ¼ 108 percentÞ: We
have checked that the problem is not the GA: even if one imposes that the multipole is
located in the origin, the result is not improved. Indeed, one sees that the problem is
intrinsic to the choice of the measurement points. This is confirmed by the fact that the
condition number of the matrix [C] in equation (7) has been estimated to 3 £ 1032. On the
other hand, one may think to make use of the condition number of [C] to find out some
useful a priori informations about the goodness of the choice of the measurement points.

3.3 Application to a real test-appliance
The method has been tested on the device shown in Figure 6, which is composed of a
magnetic core with two air-gap, excited by a coil. Two set of measurements have been
taken:

(1) on a plane above the device (64 points); and

(2) on a straight line (15 points).

The set (1) has been used to identify a multipole of the first- and third-order. The set (2)
is used to validate these models. In both cases, a good localization of the device is
found. Moreover, the two models are compatibles: in fact the first-order terms of the
two models are close, and dominate the high-order terms. The error criterion are shown
in Table III.

Figure 5.
Estimated coefficients for

the points placed onto a
straight line

Optimal
characterization

1059



The first-order model is more representative than the third-order one. One observes
that for the third-order model, the condition number of [C] is about 103: thus, a better
choice of the measurement points is likely to improve the results.

4. Conclusions
A method to model the LF magnetic field generated by electrical appliances by an
equivalent multipole is studied. The choice of the measurement points appears to be
crucial: it would be interesting to explore the possibility of improving the estimation
using multi-objective formulations.

Note

1. Actually, this can be assumed without loss of generality. In fact, the Laplace’s equation is
linear: thus, each component can be considered independently from others by the
superposition principle.
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Abstract This paper presents a new numerical approach for shape optimization of resistors with
complex geometry. The aim of this method is to develop a systematic modification of resistor design
in combination with the computation of the electric field, in order to optimize some chosen
properties like homogenization of the power dissipation on the resistor surface.

1. Introduction
The design of the electrical resistance has a large impact on the performance of
the electric circuits. Often, the designed pattern contains corners, which play an
important role in the final resistance and increase the power consumption and heat
dissipation.

Munteanu et al. (1998) used a genetic algorithm coupled with the boundary element
method in order to optimize the shape of resistors with complex geometry. This paper
uses a new algorithm that is based on a combination of the finite element method
(FEM) and the level set method (LSM) (Adalsteinnson and Sethian, 1995). The basic
LSM has shown its quality in the design optimization of elastic structures in the work
of Sethian and Weigmann (2000).

Given the resistor’s design pattern the FEM is used to compute the current
density distribution and dissipated power on the given shape (electric field
problem). Then the LSM that represents the design structure through an embedded
implicit function is used to perturb the shape and progress towards an improved
design with the rates depending on the dissipated power on the actual design
(optimization problem). Such an application falls into the category of constrained
minimization problems. This technique allows improving the homogenization of the
power dissipation on the resistor surface, but cannot guarantee that it will find a
global minimum.

2. Numerical model description
2.1 The electric field problem
Consider the geometry from Figure 1 where a 2D cross-section of a resistor pattern
with thickness th is presented.
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The resistor is modeled as an electric field problem without charge distributions inside
a domain V and is governed by Laplace’s equation:

7 · ð2s ·7U Þ ¼ 0; ð1Þ

where U represents the electric field potential distribution and s the electric
conductivity.

The boundary conditions attached to equation (1) are:

›U

›n
¼ 0; ð2Þ

on the insulating boundaries (1, 2, 4 and 5), and:

U ¼ ct; ð3Þ

on the electrodes (3 and 6). ›U=›n is the electric field normal to boundary surface
(the normal vector �n is outward directed).

In order to reduce the continuum problem described by equation (1) to a discrete
system of algebraic equations, the standard FEM is used. The domain V having the
electric conductivity s, is discretized into elements (triangles) as shown in Figure 1.
The FEM formulation for Laplace equation (4) on the domain can be written as in the
work of Fagan (1992).

Figure 1.
The resistor’s geometry

(domain V) with the fixed
boundaries 6, 3 as terminal

electrodes and changing
boundaries 1, 2, 4 and 5 as

insulators
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j

X Z
Gel

Ni
›Nj

›x
nx þ

›Nj

›y
ny

� �
dGel 2

Z
Vel

›Nj

›x
·
›Ni

›x
þ
›Ni

›y
·
›Nj

›y

� �
dVel

� �
·Uj ¼ 0: ð4Þ

where Ni and Nj are the weighting and shape functions, respectively, i; j ¼ 1 . . . 3 £ 3
(the vertices of the triangles), Uj is the potential in vertex j ð j ¼ 1 . . . 3Þ; Gel is the
boundary of the element.

Equation (4) can be rearranged for all nodes j of V in the following system of
equations:

½K�{U} ¼ {F}: ð5Þ

with [K ] the source term matrix, [U ] the potential vector and [F ] the first term of
equation (4).

When the conductivity is constant over the domain this system of equations can be
solved directly. Otherwise an iterative, Newton-Raphson, process is used.

2.2 The level set problem
The LSM is a numerical technique especially developed to model the shape evolution.
It was introduced by Osher and Sethian (1988) and has the strong feature that the
interfaces can evolve in such a way that, for example, it can break and further merge
naturally.

This technique has a wide range of applications, including problems in fluid
mechanics, combustion, manufacturing of computer chips, image processing,
electrochemical deposition and etching.

Principle behind the LSM is to track the front, which propagates with a speed
normal to every point on the interface. This supposes the embedding of the interface as
the zero level set of a higher dimension function. Given a moving closed hyper surface
G(t), propagating the front with a speed �v in its normal direction, an Eulerian
formulation for the motion of the hyper surface is produced.

At each moment the location of the interface G(t) is given by a zero level set function
Fðx; y; tÞ: At time t ¼ 0;Fðx; y; tÞ ¼ ^d is initialized on the whole domain D ðV , DÞ:
“d” is the distance from the interface G(t) to every point (x, y) of triangulated domain
and is called the signed distance function and ensure the interface is represented
by the 0 level set. The sign convention is chosen as indicated below (Hirch, 1992)
(Figure 1):

Fðx; y; tÞ , 0; in VðtÞ

Fðx; y; tÞ ¼ 0; on GðtÞ

Fðx; y; tÞ . 0; in D2V

8>><
>>: ð6Þ

Therefore, by differentiating the level set Fðx; y; tÞ with respect to time t, the equation
of the level set motion is obtained:

›F

›t
þ �v ·7F ¼ 0; ð7Þ

with Fðx; y; t ¼ 0Þ given.
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The equation describes the motion of fronts and it is a typical first order hyperbolic
equation in (x, y, t). The LSM tracks the whole boundary, with a rate �v (speed) normal to
every point, function of the dissipated power, p and current density, J ; which are
provided by the field problem (1).

Equation (7) is discretized using the residual distribution formulation (Hirch, 1992)
with the standardd Galerkin finite element shape functions. The residuals to the
triangles vertices are distributed using a multidimensional upwind method
(Fagan, 1992) such as N or Low Diffusion A scheme (LDA). The time integration is
approached using the second order accurate Petrov-Galerkin formulation.

The system of equations derived from equation (7) can be written as:

M
›F

›t

� �
þ C · {F} ¼ 0 ð8Þ

where ›F=›t is the time variation vector of F in every node ½N £ 1�; {F} the vector of
the unknown F at time step ½N £ 1�; M the global mass matrix ½N £ N�; and C the
global convection matrix ½N £ N�:

Solving equation (7) for F ¼ 0 on the boundary G and F ¼ ^d on D2V;
respectively, V, the new resistor’s boundaries are found through interpolation of the
LSM solution on the FEM mesh.

2.3 Domain discretization
To solve the problem, two meshes are used. A local mesh (on V) is used to compute the
electric field problem and a global mesh (on D) is used by the LSM.

In order to capture with accuracy the level set solution, a fine mesh is necessary in
the neighborhood of the zero level set. For that purpose a hybrid grid generator
(AMEGOS) (Athanasiadis and Deconinck, 2003) is used to create a thin structured
layer of triangles along the moving boundary G (Figure 1). The remaining part of the
domain is filled with unstructured grid of triangles. The number of elements used for
the first optimization step (Figure 1) is 2,564 on V and 5,820 on D.

3. Optimization algorithm
The principal idea is to remove material in the regions of low power dissipation and to
add material in region of high power dissipation.

In many situations, this kind of solution is not unique because situations with many
local minima could arise. For these minima any small perturbation that satisfies the
constraints requires more material such that the new given shape will not represent
the global minimum.

The optimization algorithm structure is shown in Figure 2.

3.1 Speed law and objective function definition
A distribution of the current density field on the computational domain V is found
from equations (1)-(5). The speed �v in every point of the mesh is then defined using
equation (9) which describes the balance between the maximal initial dissipated
power below which the material may be eliminated and above which material should
be added:
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vx ¼ 2
ð pc 2 pimpÞ

pc

J y

j J j
;

vy ¼
ð pc 2 pimpÞ

pc

J x

j J j
;

if pc 2 pimp . 1023; ð9Þ

and

vx ¼ 0; vy ¼ 0; if pc 2 pimp , 1023: ð10Þ

vx, vy are the components of the speed vector (m/s), Jx, Jy are the components of the
current density vector (A/m2),

j J j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2

x þ J 2
y

q
is the absolute value of the current density (A/m2), pc ¼ j J j

2
=s is the computed

dissipated power (W/m3) and pimp is the imposed power for which the resistor should

Figure 2.
Structure of the electrode
growth algorithm

COMPEL
23,4

1066



be optimally designed and is computed from the mean current density on the electrode
six represented by boundary of the initial geometry (Figure 1).

Equation (7) supposes that �v for all level sets is defined. This implies the definition
of �v in all the points of D. The distribution of speed from the moving boundary G to the
whole computation domain is called speed extension. Several methods are known in
literature. The method described by Adalsteinnson and Sethian, (1995) uses for the
velocity extension the fast marching method (Sethian and Wiegmann, 2000).

In this paper an original technique is used. It supposes the extension of the current
density from the interface G in D2V by solving a Laplace equation with boundary
conditions j J j on G and U ¼ 0 elsewhere on the boundaries of D2V: Then using
equations (9) and (10) the adding or removing material’s rates �v in every mesh point is
defined.

As can be seen from Figure 3, the evolution of the boundary profile decreases in the
neighborhood of the optimal profile and level set march less than one layer of triangles.
In order to stop the algorithm a condition pc ø pimp as objective function is far more too
stringent.

It is realistic to state for the objective function, equation (11), that the mean between
the maximum and minimum dissipated power on the optimized geometry is less than
20 per cent than imposed power at the beginning of the optimization. This represents
also the stop criteria of the optimization process.

ðpmean 2 pimpÞ=pimp £ 100 , 20 per cent ð11Þ

Besides the objective function (11) two constraints have been imposed. Since the
resistor’s topology and the computation domain are reconstructed during
the optimization process, the electrodes (3 and 6) are constrained to not move or
change in size.

3.2 Level set time-step definition
The time-step is chosen in such a way that maximum ten layers of triangle are overcome
within one level set iteration (7 and 8). The time step is calculated from the speed �v of the
boundary G and the average size of the triangles from boundary layer. All of these
provide a maximum time-step of 0.1 s for a boundary layer of 1022 (m).

Figure 3.
Boundary evolution

profiles during the
optimization
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4. Results
Consider the geometry from Figure 1 with the dimension in meters, th ¼ 0:001 m and
s ¼ 5:72 £ 106 (V/m). On the boundaries 3 and 6 are applied U ¼ 0 V; respectively,
U ¼ 100 V:

The corners of the resistor play a negative role in the power dissipation in the
original design. The maximum and minimum dissipated power for the initial geometry
and for some of the optimisation steps can be seen in Table I. The imposed power in the
equations (9), (10) and (11) is pimp ¼ 2:77 £ 108 (W/m3).

At the end of the optimisation process, the geometry is changed in such way
(Figures 3 and 4) that the dissipated power is almost constant in the entire resistor if it
refers to the initial geometry.

The computation time needed for the optimization process was around 912 s
for 17 iterations on a PC PIII 560 MHz and 256 MB RAM. In average 50 s per
iteration.

5. Conclusions
A new algorithm based on LSM for the optimal design of resistors has been presented.
This supposes the solution of two problems: an electric field problem, in order to find a
suitable law for adding or removing material on the optimized geometry, and a level set
problem, which uses the quantities founded before, in order to alter the shape towards
the final geometry. The example presented here proves that the LSM is a sharp and
efficient tool for optimization applications. Thought not shown here, the LSM handles
more complex geometries and objective functions.

Figure 4.
Optimized resistor

Iteration 1 2 3 10 17

pmax (W/m3) 4.21£ 109 1.29£ 109 6.74£ 108 5.72 £ 108 5.23 £ 108

pmin (W/m3) 1.92£ 104 7.79£ 106 3.47£ 107 1.19 £ 108 1.42 £ 108Table I.
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Abstract Finite-element simulations of induction machines with squirrel-cage rotor require
transient solution algorithms. For this reason a transient 2D solver is utilized which takes
rotational movement of the rotor into account. Its formulation and the time-step algorithm are
given. Two different kinds of eccentricity of the rotor and their combination are defined and
studied. The three motor variants are computed and the torque, the net force, and the
surface-force density are compared in time and frequency domain.

1. Introduction
Owing to fabrication tolerances the rotors of electrical machines are usually not
positioned centrically. In the case of an induction machine with squirrel-cage rotor used
as a power-steering drive this has strong effect on the acoustic behavior. Eccentricity
can cause extra force excitation of the stator teeth which then produces extra noise
radiation. In order to estimate the effects of eccentricity the induction machine with
squirrel-cage rotor is modeled and simulated using the finite-element method (FEM).

In this paper the two types of eccentricity – static and dynamic eccentricity – and
their combination are simulated. Therefore, three different two-dimensional FE-models
of the entire machine have to be generated. The FE-models are simulated with a
2D-transient solver which applies a node-based ~A-approach and the first order
time-step algorithm. The results provided by the solver for each time step are next
to the flux-density distribution the torque and the net force acting on the rotor. Using
the flux-density distribution the surface-force density is derived for each time step.
Finally torque, net force and the surface-force density on the stator teeth are analyzed
in time and frequency domain.

2. Definition of the different types of eccentricity
Figure 1 shows the three “pure” types of rotational movement of a rotor of an electrical
machine. The centric case is the optimal case (Figure 1(a)). The rotor axis is fixed to
the stator and the rotational axis. The air gap d is equidistant along the entire
circumference. Therefore, forces arising on the one side of the machine are
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compensated on the opposite in case the number of rotor slots is even. The studied
machine has NR ¼ 26 rotor slots. In the case of static eccentricity which is depicted
in Figure 1(b) the rotor and rotational axis are now shifted to one side of the machine.
The air gap is no longer symmetrical. Owing to the fixed rotor axis the maximum and
minimum force excitation are spatially fixed as well. The machine is excited very
asymmetrical. If the rotational axis is then shifted back into the position of the stator
axis the rotor shows dynamical eccentricity behavior (Figure 1(c)). The minimum air
gap is no longer spatially fixed but rotates with the rotor as well as the maximum and
minimum force excitation. Since these are “pure” types of eccentricity the most
probable case is a combination of these, which is the static-dynamic case. The rotational
axis lies between the rotor and the stator axis. The force excitation is a mix of both the
fixed and the rotating excitation.

3. Formulations
3.1 Transient solver
The applied solver is part of the object-oriented solver package iMOOSE (Arians et al.,
n.d.). The transient FEM formulation takes the rotational movement into account and
two finite-element meshes have to be handled once at a time. The two-dimensional
~A-approach is node-based. The magnetic vector potential is used in all regions.
The equationZ

G

7 ·ai · n ·7 · AzðtÞ þ ai ·s ·
›

›t
AzðtÞ

� �
dG ¼

Z
G

ðai · Jz0ðtÞÞdG ð1Þ

has to be solved in the complete model G and is presented in Galerkin formulation
(Arians and Henneberger, 2000). The material parameters n and s represent the
non-linear reluctivity and the linear conductivity. The shape function of an element is
defined by ai. Triangular shaped elements are used. Jz0ðtÞ describes the z-component of
the given coil-current density as the only excitation.

For linear interpolation of the time-dependent variables the first order time-step
algorithm is applied and A(t) is written as function of time:

AðtÞ ¼ ð1 2QÞAn þQAnþ1 ð2Þ

Q ¼
t 2 tn

tnþ1 2 tn
¼

t 2 tn

Dt
; 0 # Q # 1: ð3Þ

Q is the weighting parameter and is set to Q ¼ 2=3 according to the Galerkin scheme
(Zienkiewicz and Taylor, 1989). Dt is the time step.

Figure 1.
Different types of

eccentricity
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3.2 Formulation of the surface-force density
With the Maxwell stress tensor

~s ¼
1

2
~n12½Bn ðH 1n 2 H 2nÞ2 ðw 0

1 2 w 0
2Þ� ð4Þ

an expression for the normal component of the local surface-force density is given
(Ramesohl et al. (1996). The index n represents the normal components of ~B and ~H: ~n12

is the normal vector of the boundary surface from region 2 to 1. w0
1 and w0

2 are the
magnetic-coenergy densities of these regions. The surface-force density vector is
perpendicular to the line element. Lorentz forces and forces stemming from
magnetostriction can be neglected because they are much smaller than the
electro-magnetic forces.

4. Finite-element models
For the regarded application investigations have shown that an induction machine
with NS ¼ 36 stator slots and NR ¼ 26 rotor bars is a very good variant. The
lamination is shown in Figure 2. The machine consists of a two-layer wave-winding
with three phases which is not chorded. The spread factor is q ¼ 3 (Nürnberg, 1979).
This results in a more sinusoidal air gap flux-density behavior. For easier modeling the
two layers are not on top of each other but next to each other. This has no effect to
the electromagnetic simulation because the magneto-motive force depends only on the
current coverage of the slot. Since there is no symmetry in the models because of
the eccentricity full 3608-models have to be generated. Figure 2 shows only the half
of the model. The FE-model for the dynamic eccentric case depicted consists of
E ¼ 13; 600 first-order triangular elements with N ¼ 6; 874 nodes.

In Figure 3 closeups of the maximum and minimum air gap in the initial position of the
same model are depicted. The rotor is shifted v ¼ 0:1 mm to the right (positive x-direction).
The air gap of dnominal ¼ 0:3 mm now varies between dmin ¼ 0:2 and 0.4 mm.

5. Transient 2D simulation
The three eccentric FE-models are simulated with the 2D-transient solver which
calculates the torque and the net force on the rotor. The torque behavior of all three
cases is shown in Figure 4.

In all three cases the torque pulsates because of the different reluctivities in each
time step stemming from the rotor and stator slots. Although the average torque of

Figure 2.
Lamination of the
induction machine, two
pole pitches
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T ¼ 4:337 N m is the same for all variants the instantaneous values do not match
exactly. All graphs appear to reach the maximum value at some time so it is not
significant which kind of eccentricity is given.

Figure 5 shows the net-force behavior. Again the graphs of all three variants pulsate
now showing a very different behavior. If the rotor is positioned statically eccentric the
net force pulsates with rotor frequency:

f R ¼ 20 Hz; TR ¼ 1=f R ¼ 0:05 s: ð5Þ

Figure 4.
Torque behavior of the

three eccentric FE-models

Figure 3.
Closeups of the maximum
and the minimum air gap

Figure 5.
Force behavior of the three

eccentric FE-models
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The average value in the case of static eccentricity is Fstat ¼ 107:4 N: In comparison
the net force in the case of dynamic eccentricity oscillates weakly. The average value is
Fdyn ¼ 170:2 N: When the maximum net force in the case of static eccentricity is
reached the two graphs match each other. This configuration is reached for the initial
position of the rotor. If both eccentricities are combined the average value is Fstat�dyn ¼
163:9 N: The net force has a main harmonic with f R ¼ 20 Hz because the statical
portion of the signal behaves strongly like in the case of dynamic eccentricity.
At the point when the maximum net force in the case of static eccentricity is reached all
three graphs reach the same value. In that moment the direction of the three net forces
are all the same as Figure 6 shows.

6. Computation of the excitation of the stator-teeth
The computation of the normal component, i.e. radial component, of the
electromagnetic stator-teeth force-density is performed as described by Schlensok
et al. (2003). The three computations have the same initial rotor position. The rotor is
shifted in positive x-direction (to the right) with v ¼ 0:1 mm:

Figure 7 depicts the force-density distribution of the stator teeth for all three types
of eccentricity for the same time step using the same scaling. In the chosen time step
the rotor is positioned at v ¼ 20:1 mm (to the left) in the case of dynamic eccentricity.
The major electromagnetic force excitation is in horizontal direction. Figure 7(a) shows
the distribution for dynamic eccentricity. On the left as well as on the right side the
stator is assigned with about the same force values. In the case of static eccentricity
which is shown in Figure 7(b) the force density has the largest values on the right side
of the stator. For the combination of both types of eccentricities (Figure 7(c)) the
dynamic portion outweighs the static. The maximum force density is again found on
the left side although in the case of static-dynamic eccentricity the rotor is positioned in
the center of the stator for this time-step. On each stator tooth itself the maximum
force-density appears at the up-running edge as the zoom in Figure 7(d) depicts.

In a next step the time-dependent force-density behavior is analyzed for the
up-running edge element of each stator tooth applying the Fast Fourier
Transformation (FFT) (Bronstein and Semendjajew, 1991).

Figure 8 shows the spectrum that results of a FFT. The orders occurring in the
spectrum are the double ð f ¼ 96:4 HzÞ and four times ð f ¼ 195:7 HzÞ the stator

Figure 6.
Direction a of the force
for all three types
of eccentricity
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frequency, the 26th ð f ¼ 520 HzÞ; 52nd ð f ¼ 1:040 HzÞ and 78th ð f ¼ 1:560 HzÞ order
of the rotor frequency ð f R ¼ 20 HzÞ and their modulations with twice the stator
frequency, 26th, 52nd, and 78th are the first, second, and third rotor-slot harmonics
(Nau, 2000; Seinsch, 1992).

Figure 7.
Surface-force

density-distribution
of the stator teeth at

one time step

Figure 8.
Result of FFT of the

force-density excitation of
the element at up-running
edge of stator tooth 1 for

static eccentricity
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Figure 9 shows the amplitudes of the force-density of all 36 stator teeth for the first
order of the rotor frequency f R ¼ 20 Hz: The highest amplitudes are reached in the
case of dynamic eccentricity. Because of the eccentric revolution of the rotor all teeth
are stressed with rotor frequency in this case. For static eccentricity the effect is always
stationary. So there is no interrelationship between this spectral order and the rotor
frequency. If both eccentricities are combined the effects of both are mixed. So the
amplitudes reach the average height of both.

For the second order of the stator frequency f ¼ 96:4 Hz the results of the FFT are
shown in Figure 10. The excitation differs depending on which tooth is regarded but is
independent of the type of eccentricity. The average force density for all three calculations
lies between s96:4 min ¼ 13:4 N=m2 and s100 max ¼ 13:6 N=m2: Measurements and
acoustic simulations have shown that this order does not generate any significant
acoustic noise although compared to the other studied orders where the highest
amplitudes are reached.

Figure 11 shows that there is a strong correlation of the orders with the rotation of
the rotor. The shown orders are the 26th ð f ¼ 520 HzÞ; the 52nd ð f ¼ 1; 040 HzÞ; and
the 78th ð f ¼ 1; 560 HzÞ order of the rotor frequency ð f R ¼ 20 HzÞ: These are the first,

Figure 9.
Amplitudes of the
force-density of all 36
stator teeth for first
order of rotor frequency:
f R ¼ 20 Hz

Figure 10.
Amplitudes of the
force-density of all 36
stator teeth for second
order of stator frequency:
f ¼ 96.4 Hz
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Figure 11.
Amplitudes of the

force density of all
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second, and third rotor-slot harmonic. For all three orders the highest amplitudes
for the case of static eccentricity are reached at the teeth where the air gap is smallest
(near tooth 27). The lowest excitations are reached on the opposite side of the stator
near tooth 9. For dynamic eccentricity all teeth are excited nearly in the same way.
The amplitudes do not differ strongly. The reason is the same as in the case of
f R ¼ 20 Hz: Owing to the revolving narrowest air gap the excitation revolves as well. If
both cases are combined the stator teeth at the position of the smaller air gap are
stressed more than those on the opposite side. Nevertheless, the effect is not as strong
as in the case of static eccentricity. For all three orders shown in Figure 11 the average
force density does not differ significantly depending on the type of eccentricity.

7. Conclusion
For an induction machine with squirrel-cage rotor as power-steering drive the acoustic
behavior is of high significance. The subjective safety sensation of the passenger is
strongly affected by the noise radiation of such important devices like the steering.
Owing to the manufacturing process it is not possible to build 100 percent perfect
electrical machines. This will always result in some kind of eccentricity. If the type of
eccentricity which arises primarily can be detected it is possible to make predictions if
there will be a strong effect on the acoustics or not.

The three types of eccentricity regarded here behave in very different ways.
Dynamic eccentricity causes revolving force excitations, whereas static eccentricity
produces fixed force excitations depending on the direction of the displacement of the
rotor. The combination of both, the static-dynamic eccentricity, brings up both effects.
Therefore, FE-models of the three variants are built and simulated with a 2D-transient
solver in order to compare the effects. The formulations of the transient solver and the
surface-force density are given and the time-stepping algorithm explained.

Torque and the net force acting on the rotor are computed and compared for all
three models. In all three cases the torque acts in the same way and is not significantly
affected by the type of eccentricity. In contrast the net-force behavior depends strongly
on the case of eccentricity. For any point in time all variants are excited
asymmetrically. But in the case of dynamic eccentricity the asymmetrical force
excitation revolves. Static eccentricity results in fixed spatial to the direction of the
minimal air gap. For the combination of both the effects are combined. The net
force excitation revolves and has a stationary part as well.

In a second step the time dependent surface-force density on the stator teeth is
derived from the flux-density distribution of each time step. Main orders excited are the
double stator frequency and its multiples and multiples of the rotor-slot harmonics and
their modulation with the double stator frequency. These orders are regarded explicitly
for all 36 stator teeth and the three cases of eccentricity. Depending on the origin of the
order the force density has the same amplitudes for all teeth or is fixed to the location of
certain teeth. The order at double stator frequency is the same for all three variants, the
order at rotor frequency is highest for the dynamic eccentricity. The other three orders
(multiples of the rotor-slot harmonic) depend on the type of eccentricity and are the
highest for static eccentricity and fixed to the teeth in direction of the smallest air gap.
Measurements of the manufactured machines must now detect which is the most
possible type of eccentricity in reality. This way the origin of the generated noise of
these machines can be detected as a result of eccentricity or another source.
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Abstract This paper presents a method to analyse electrical machines considering simultaneously
the electromagnetic field, electric circuit, control loop, movement and skewing effects. The major
contribution of this work leans on its generality, i.e. it can be applied to electrical machines
connected to static converters submitted to any control laws, avoiding an a priori analysis.
Simulation results of a three-phase Brushless AC (BLAC) motor fed by a PWM converter is
presented as well as a comparison of simulation and experimental results obtained using a
two-phase-on converter were also presented.

1. Introduction
Electrical machines are complex structures and in their design, various aspects such as
magnetic fields, feeding electronic circuits, control strategies, movement, heat transfer,
acoustic noise, etc., must be considered. Their performances are not defined only by their
electromagnetic or mechanical characteristics, but mainly by the interaction between the
following quantities: mechanical characteristics, magnetic field distribution, feeding
electronic circuit, etc. A few years back, the analysis of such complete system
considering multiple aspects in a same set of equations was prohibitive, due to the
unavailability of enough computational resources for data processing. Therefore, many
simplified considerations were assumed and indirect coupling methods were developed
to solve this kind of problem.

Nowadays, thanks to the improvements in the computation area, the analysis of
such complex systems is more affordable. This enables the development of more
realistic models which can include in their formulations a major part of the phenomena
described above. In this way, many researchers have proposed numerical procedures to
investigate the coupling effects of electromagnetic fields and mechanical structures,
electronic circuits, etc.

Jang et al. (2002) present an analysis of a brushless DC (BLDC) motor considering a
coupled system of magnetic and mechanic finite element equations. An a priori
analysis of the operation sequences of a PWM converter and its speed control loop is
considered in the simulation. Ho et al. (2001) also studied a BLDC motor. They use the
multi-slice technique to evaluate the eddy-current losses in the permanent magnets.
In a separate block, the control strategy defines the terminal voltage to be applied to
the motor windings. Consequently, the circuit and field equations are indirectly
coupled. A general method to perform a direct coupling of static converters and
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electromagnetic devices considering closed loop control strategies is described by Roel
Ortiz et al. (2001). The switching control signals are generated automatically according
to the value of the variable to be controlled and the control law. Nevertheless, in this
study, the movement of the electromagnetic device is not considered. Thus, to improve
the previous work and to make possible the analysis of electrical machines, the motion
is now considered by means of the moving band technique (sadowski et al., 1992). The
Maxwell stress tensor and the mechanical oscillation equation are used to consider
the dynamic aspects of the mechanical transient. To consider the skewed slots effect in
the electrical machine, the multi-slice technique is used (Dziwniel et al., 2000).

2. The direct coupling method
The electrical machine is modelled in a 2D domain, using the Maxwell equations to
formulate the field behaviour and the FEM to discretize the domain. The formulation
uses the magnetic vector potential as unknown, the Galerkin method to obtain the set
of equations to be solved numerically, the Euler recurrence method to discretize the
temporal derivatives and the Newton-Raphson method to consider the non-linear
characteristic of magnetic materials (Oliveira et al., 2002). The multi-slice technique is
used to consider the skewing of stator slots. In this technique, the motor is divided into
M slices uniformly distributed along its axis (Dziwniel et al., 2000). In each slice the
magnetic potential and the electric currents have only an axial component. The strong
coupling between all slices is imposed by the continuity of the currents circulating
through them. Equation (1) shows the matrix system of the field equations:

MðmÞ · AðtÞ þ N ·
d

dt
AðtÞ2 P · IðtÞ ¼ D

Q ·
d

dt
AðtÞ2 R·IðtÞ2 L ·

d

dt
IðtÞ ¼ UðtÞ

ð1Þ

where A is a set of M vectors of magnetic vector potentials in the finite element mesh
nodes; I the vector of electric currents in the windings of the electromagnetic structure;
M a set of M matrices related to permeability; N a set of M matrices related to electric
conductivity; D a set of M vectors related to permanent magnet contributions; P a set
of M matrices that relates the element current and its nodes; Q a set of M matrices
associated with flux linkage; R a diagonal matrix representing windings resistances;
L a diagonal end-winding inductances matrix. U is the vector corresponding to the
voltage across the electromagnetic device windings.

To define the vector U, the external electric circuit is modelled using the state
variable approach in association with the graph theory. This technique gives the
necessary support to fully automate the construction process of the electric equation
system (Kuo-Peng et al., 1997). According to these theories, we can write the equations
that describe the electric circuit behaviour as follows:

d

dt
XðtÞ ¼ G1ðtÞ·XðtÞ þ G2ðtÞ·EðtÞ þ G3ðtÞ·IðtÞ

UðtÞ ¼ G4ðtÞ·XðtÞ þ G5ðtÞ·EðtÞ þ G6ðtÞ·IðtÞ

ð2Þ

where X is the circuit state variables vector. The state variables are the capacitor tree
branch voltages and the inductor link currents. E is the independent voltage and
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current sources vector and G1-G6 are matrices that depend on the converter topology
and change at each switch commutation, and so they have to be determined at each
calculation time step. This is made in an entirely automatic way, according to the
switch type and its commutation characteristics (Kuo-Peng et al., 1997).

The equation systems (1) and (2) have two common variables (U and I), and so the
field and the circuit equations can be coupled together in a single system in equation
(3), using U as a direct linking variable. System (3) is the complete system that includes
the field equations for a domain divided into M slices coupled to the circuit ones.

M1 þ
N1

Dt
. . . 0 . . . 0 P1 0

..

. ..
. ..

. ..
. ..

.

0 . . . Mm þ
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ð3Þ

The moving band technique is chosen to consider the movement during the field
calculation (Sadowski et al., 1992). At each time step, the electromagnetic torque is
calculated via the maxwell stress tensor. The force is evaluated along a line placed in
the airgap and the electromagnetic torque Te is calculated by the following
relationship:
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Te ¼ L

Z
G

r £
1

m0
ðBnÞB 2

1

2m0
B 2n

� 	
 �
dG ð4Þ

where L is the length, B the induction in the elements and r the vector that connects the
origin to the midpoint of segment dG.

The new angular speed and rotor displacement are evaluated by the mechanical
oscillation equation:

v rðtÞ ¼ v rðt 2 DtÞ þ
ðTe 2 TL 2 Bm ·vrðt 2 DtÞÞ

J
·Dt ð5Þ

uðtÞ ¼ uðt 2 DtÞ þ vr·Dt ð6Þ

where TL is the load torque, J the moment of inertia, Bm the friction coefficient, vr the
rotor speed and u the rotor position.

When a commutation of the switches occurs, the time step has to be refined to well
represent the converter/machine operation. This must be accomplished by a refinement
of the rotor movement which implies in turning backward and then forward the rotor.

The control loop implementation is detailed in Roel Ortiz et al. (2001). It consists of
two blocks. The first block represents the coupled system and the second one,
the control loop system. Data exchange between these two blocks occurs at each
time step.

To illustrate how the proposed methodology is implemented, Figures 1-3 show the
flowcharts with its main parts.

3. Application examples
To demonstrate the effectiveness of the presented method, a three-phase BLAC motor
fed by a converter (Figure 4) driven by two types of control strategies is tested.

The motor characteristics are presented in Table I. The motor has skewed stator
slots and to consider the skewing effects, five slices equally distributed along its axis
are used in the simulation.

The study domain consists of one machine pole, i.e. a 458 domain (Figure 5).
Anti-periodic conditions are used to represent the whole machine.

3.1 Three-phase BLAC motor fed by PWM converter
The converter operates in a three-phase-on configuration. The PWM triangular
frequency is 8 kHZ. The three sinusoidal reference frequencies are determined by a
closed loop speed control. In this manner, the reference frequency varies according to
the instantaneous rotor speed, starting the movement softly until the speed reaches the
imposed reference one. The DC voltage source is constant and is equal to 230 V.
Figures 6-8 show the three sinusoidal references, the winding voltage W1 and the
speed and torque waveforms, respectively.

3.2 Three-phase BLAC motor fed by a two-phase-on excitation converter
The tested structure is the same as the one shown in Figure 4, but the control strategy
is different. The control generates a sequence of six pulses with the same width and the
rotor speed is monitored and provides a feedback signal to control the pulse frequency.
If the rotor speed is smaller than the imposed reference, the pulse frequency is
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increased, inversely it is decreased if the reference is exceeded. The DC voltage source
is maintained constant and is equal to 30 V.

This control strategy acts only on the frequency since the pulse width is kept
constant. Consequently, the average voltage does not change. This characteristic

Figure 1.
Implemented method
flowchart

Figure 2.
Control action
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produces ripples in the transitory and in the steady-state operation. Thus, the starting
process is not as soft as in the previous example (three-phase BLAC motor fed by a
PWM converter). Figure 9 shows the transient speed and torque waveforms.

Figure 10 shows the transient current and line voltage waveforms.
Figures 11 and 12 show the comparison of experimental and simulated waveforms

at steady-state operation.

Figure 3.
Input data definition

Figure 4.
The simulated and

experimented structure

V0 200 V Length 40 mm
Phases 3 # PM 16 (8/pole)
Poles 8 PM dim. 14.1£20.3 mm
Turns/pole 33 Magn. airgap 0.7 mm
Slots 24 Mech. airgap 0.45 mm
R258C/phase 2.14713V J 0.21894 kgm2

Volt. constant 47.1 V/Krpm PM induction 1.03 T
Stator radius 26-47 mm Rotor radius 10.5-25.4 mm
Skew angle 158(1 slot) Double layer-series connection

Table I.
Blac motor

characteristics
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Figure 5.
BLAC motor: finite
element domain

Figure 6.
Sinusoidal references:
phases 1, 2 and 3

Figure 7.
W1 voltage waveform
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Figure 8.
(a) Speed; and

(b) electromagnetic torque
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Figure 9.
(a) Speed; and
(b) electromagnetic torque
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Figure 10.
(a) Transient current

waveform; and
(b) transient line

voltage waveform
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4. Conclusion
A general method coupling directly the electromagnetic field including the machine
skewing slots effect, the closed loop controlled converters and the movement equations
is presented. This method is implemented in an easy-to-use way, thanks to its
flexibility, allowing the analysis of electrical machines coupled to different circuit
topologies, controlled by several control laws. The comparison of simulated and
experimental results shows a good agreement.

Figure 11.
Steady-state current
waveform – dashed line:
experimental result; and
solid line: simulation
result

Figure 12.
Steady-state line voltage
waveform – dashed line:
experimental result; and
solid line: simulation
result
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Abstract A numerical analysis tool has been developed to study electromagnetic characteristics of
high-temperature superconducting thin film used for a resistive-type fault current limiter (FCL)
and coated conductor. It adopts the finite element method based on current vector potentials with
thin-plate approximation. Transport current, temperature dependence and strong non-linearity of
electromagnetic properties, and state transition of superconductor are taken into account by
solving a three-dimensional coupled problem of electromagnetic field, an electric circuit and
thermal field. Then using this numerical analysis tool the current imbalance and current limiting
characteristics of a FCL device, the influence of inhomogeneity of superconducting properties on
them, and AC losses in YBCO coated conductor are studied.

1. Introduction
YBCO (YBa2Cu3Ox) thin film possesses good superconducting characteristics:
high critical current density even at a high magnetic field at a temperature of
20-50 K. Therefore, a YBCO superconducting wire is strongly expected as a
second-generation high-temperature superconducting wire after Bi-Sr-Ca-Cu-O wires,
and has been intensively developed in the world (Tokunaga et al., 2002). In addition,
YBCO superconducting film can be used in a resistive-type fault current limiter (FCL),
which is highly expected to be developed for electric power networks (Kubota et al.,
1999; Shimohata et al., 2002).

When electromagnetic characteristics are theoretically investigated, the finite element
method (FEM) is a general and powerful tool. In YBCO superconducting wires and FCLs
the film structure is a specific condition for FEM analysis. So a numerical analysis tool
has been developed to calculate electromagnetic characteristics of coated conductors and
resistive-type FCLs using YBCO superconducting film (Sugita and Ohsaki, 2003a). The
analysis tool uses FEM based on current vector potentials with thin-plate approximation
(Tsuboi and Kunisue, 1991) with transport current, temperature dependence and strong
non-linearity of electromagnetic properties, and state transition of superconductor taken
into account. It can deal with a three-dimensional coupled problem of electromagnetic
field, an electric circuit and thermal field. Current imbalance phenomenon and current
limiting characteristics of a fault current limiting device, and AC losses in the thin-film
superconductor were calculated with this software tool (Sugita and Ohsaki, 2003b).
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In this paper, the analysis model and method are first described and then some
calculation results of current limiting performance of a superconducting fault current
limiting device and AC losses of coated conductor are shown.

2. Analysis model
2.1 Fault current limiting device
A fault current limiting device has a three-layered structure consisting of a sapphire
substrate, a YBCO superconducting film, and a metal layer for protection against hot
spot generation. Figure 1 shows the electric circuit of the numerical analysis model.
Table I lists the parameters of the FCL device and the electric circuit. Without the FCL
device the circuit current reaches its maximum value of 210 A, which is three times
larger than the critical current of the superconductor.

To investigate the influence of inhomogeneity of superconducting properties on
current imbalance and current limiting characteristics, the analysis model of YBCO
superconducting film shown in Figure 2 was used. Transport current flows in the
superconductor from the left to the right. Inhomogeneous superconducting properties
were given to the areas “a” and “b” shown in Figure 2.

2.2 Coated conductor
To study fundamental characteristics of AC losses in the YBCO coated conductor, a
one-dimensional model of superconducting film can be used with the two-dimensional
magnetic field considered. Table II lists the specifications of YBCO coated conductor
model.

Figure 1.
Electric circuit of FCL for

numerical analysis

Thickness 0.35mm
Width 10 mm
Length 42 mm
Critical current 70 A
Critical current density 2.0 £ 1010 A/m2

Reference electric field 1.0£1024 V/m
n-value 20
Metal layer thickness (gold) 50 nm
Substrate thickness (sapphire) 0.55 mm
AC voltage 200 V, 60 Hz
External resistance 1.349V

Table I.
Specifications of FCL

device

FEM analysis of
current limiting

devices

1093



3. FEM analysis method
3.1 Current vector potential method
For computation of current distribution in the superconducting thin film, the finite
element method based on current vector potentials with thin-plate approximation was
used (Sugita and Ohsaki, 2003a; Tsuboi and Kunisue, 1991). The current flow in the
superconductor is limited in the tangential direction, and so the current density J is
defined by J ¼ 7 £ ðnT Þ; where n is the unit vector normal to the computation
surface and T is the normal component of the current vector potential. Therefore, it
becomes a two-dimensional problem of the scalar variable T. The governing equation
of T is given by

r72T ¼
mh

4p

›

›t

ZZ
S

{7 £ ðnT Þ} £ r · n

r 3
dS þ

›B0 · n

›t
ð1Þ

where r is the electric resistivity, m is the magnetic permeability, h is the thickness of
the superconducting thin film, t is the time, r is the vector from the source point to the
field point and B0 is the flux density of externally applied magnetic field.

3.2 Modeling of superconducting characteristics
A non-linear E-J relation (E: electric field, J: current density) based on the power law
was used for modeling electromagnetic property of the superconductor. It is described
by the following equation:

E ¼ EC
J

JC

� �n

ð2Þ

where JC is the critical current density that is defined by the reference electric field EC,
and n is known as the index number, n-value. Figure 3 shows an E-J curve of the
superconductor. The equivalent resistivity of the superconductor rSC is given by

Thickness 0.3mm
Width 10 mm
Critical current 87.4 A
Critical current density 2.9 £ 106 A/cm
Reference electric field 1.0mV/cm
n-value 36.6

Table II.
Specifications of YBCO
coated conductor

Figure 2.
Numerical analysis model
of YBCO superconducting
film for a fault current
limiting device.
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rSC ¼
E

J
¼

EC

JC

J

J C

� �n21

ð3Þ

The critical current density JC depends on the temperature TSC and the magnetic flux
density B, which is described by the following equation in general:

JCðB;TSCÞ ¼ A 1 2
TSC

TC

� �2
" #m

Bg21 1 2
B

BC2

� �d
ð4Þ

where TC is the critical temperature and BC2 is the upper critical flux density, A, m, g,
and d are constants.

There is a metal protection layer on the superconducting film. The effective
resistivity of the conductor re is as follows:

re ¼
rmetalrSCðtmetal þ tSCÞ

rmetaltSC þ rSCtmetal
ð5Þ

where rSC is the resistivity of the superconductor, rmetal the resistivity of the metal
layer, tSC the thickness of the superconducting layer, and tmetal the thickness of the
metal layer. When the YBCO thin film layer is in the superconducting state, equation
(5) becomes re < rSC: When the superconducting layer is getting normal, the current
sharing between two layers starts.

3.3 Boundary condition
The transport current and the coupling with the electric circuit are taken into account
through the boundary conditions of the electromagnetic field analysis. The total
transport current I0 can be given by the boundary condition.

I 0 ¼

ZZ
S

J · n dS ¼

ZZ
S

ð7 £ T Þ · n dS ¼

Z
C

T · ds ð6Þ

If the normal components of T on both side boundaries are assumed to be uniform with
values of 0 and T0, respectively, then the following equation can be derived from
equation (6).

Figure 3.
E-J characteristics of

superconductor
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T0 ¼
I 0

h
ð7Þ

The electromagnetic field and the electric circuit are combined through equation (7).

3.4 Electric circuit equation
The equation of electric circuit is as follows:

V 1 ¼ RSI þ R1I þ L1
dI

dt
ð8Þ

where V1 is the AC voltage source, RS is the resistance of FCL, R1 is the external
resistance and L1 is the external inductance

3.5 Non-linear calculation
The FEM equations with the backward differential approximation applied become the
following form:

R½ � þ
1

Dt
M½ �

� �
{T}k 2

1

Dt
½M �{T}k21 þ

›B0

›t

� 	
k

¼ 0 ð9Þ

where [R ] is the symmetric sparse matrix depending on the node locations and electric
resistivity of the elements, [M ] is the asymmetric dense matrix depending on the node
locations and obtained by Biot-Savart’s law and Gauss-Legendre integration formula,
Dt is the interval time, and k is the time step number. For strong non-linearity of
resistivity rSC, Newton-Raphson method was adopted.

›{w}

›{T}

� �
{dT} ¼ 2{f} ð10Þ

{f} ¼ ½R� þ
1

Dt
½M �

� �
{T} 2

1

Dt
½M �{T*} þ

›B0

›t

� 	
ð11Þ

where {T } is the potential vector at time t and {T *} is the value at time t2Dt.

3.6 Thermal field calculation
For FCL analysis, three-dimensional thermal field analysis is necessary because
temperature distribution strongly affects the operating characteristics of
superconductor. The governing equation of thermal field analysis is given by

k72TSC 2 rmc
›TSC

›t
¼ 0 ð12Þ

where k is the thermal conductivity of the substrate, TSC is the temperature of the
superconductor and substrate, rm is the mass density, c is the specific heat, and t is
the time. Temperature dependence of k and c as well as cooling characteristics of liquid
nitrogen are considered.
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4. FEM analysis results
4.1 Current imbalance
The current imbalance and current limiting characteristics of the YBCO current
limiting device were analyzed by the developed tool. Current distribution in the
superconducting film affects AC losses and the uniformity of S-N transition. Figure 4
shows the current distribution across the homogeneous superconducting film when the
transport current changes from 14.6 to 98.6 A before S-N transition. At first the current
density at the edges increases up to 2:2 £ 1010 A=m2. As the transport current
increases, more current gradually penetrates towards the center. When the transport
current becomes about 90 A, the current density is almost uniform in the
superconductor. The current distribution can be considered uniform in homogeneous
superconducting thin film when the film works as a fault current limiter.

Inhomogeneous superconducting properties, namely, the critical current density of
1:6 £ 1010 A=m2, which is 20 per cent smaller than that of the other part, was given to
the area “a” shown in Figure 2. Figure 5 shows the current distribution under this
condition. The transport current bypasses the area “a” because the resistivity of the
area “a” is larger than that of the other part. Figure 6 shows the current density vectors
when the transport current is 85.4 A.

Figure 4.
Distribution of current

density when the
transport current changes
from 14.6 to 98.6 A in the

homogeneous
superconductor

Figure 5.
Distribution of current

density when the
transport current changes
from 29.2 to 98.6 A in the

inhomogeneous
superconductor
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4.2 Current limiting characteristics
The influence of inhomogeneity of the superconducting properties on current limiting
characteristics has been also investigated. Figure 7 shows calculated results of current
limiting characteristics when lower critical current densities were given to the area “a”
shown in Figure 2. A smaller critical current density of the weak part decreases the
starting current of current limiting process and lengthens current limiting transient
period.

4.3 AC losses of YBCO coated conductor
Figure 8 shows AC losses per cycle of the YBCO coated conductor shown in Table II.
The losses were normalized by the square of the critical current, I 2

C: The value of IC was

Figure 6.
Current density vectors for
the transport current of
85.4 A

Figure 8.
AC loss characteristics
calculated by FEM

Figure 7.
Dependence of current
limiting characteristics on
inhomogeneity of the area
“a”
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210 A, which was not the critical current defined by the criteria 1 £ 1024 V=m but
determined by the analysis. The obtained curve of AC losses characteristics was
between the curves obtained by the Norris’s formula for an ellipse and formula for a
strip (Norris, 1970).

5. Conclusions
The FEM analysis tool was developed for study on electromagnetic characteristics of
YBCO superconducting film that could be applied to resistive-type fault current
limiters and coated conductor. With this analysis tool, fundamental characteristics,
such as current imbalance, AC losses, switching behaviors, etc. were successfully
calculated. It is expected that this tool can be used for further analysis and design of
superconducting apparatuses.
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Abstract This paper deals with a coupled field-circuit simulation of transients in a three-phase,
three-limb power transformer taking non-linearity into consideration. A comparative analysis of
the results obtained from the application of 3D and 2D field models has been carried out. Owing to
core saturation and the non-periodic components of the magnetic fluxes, the magnetic field exists
also within the space surrounding the core. Hence, three-dimensional description is necessary.
It has been proved that assuming the 2D model significantly overstated peak values of currents are
obtained.

1. Introduction
Computer simulation is a helpful tool for the designer of electromagnetic devices.
However, it requires a very precise and credible model of electromagnetic phenomena.

Analyses of three-phase transformers are very often performed on the basis of the
model with lumped parameters (the circuit model). However, such a model does not
provide sufficient accuracy in the case of non-symmetrical or transient operations,
especially in transformers with a non-linear magnetic core. During transients the
non-periodic components of magnetic fluxes cause very strong saturation of some core
parts (limbs, yokes) while other parts remain non-saturated. The reluctances of core
parts may differ hundred times; their relations vary in time. This disrupts the
symmetry of the magnetic field. Furthermore, in the case of a three-limb transformer
the magnetic field also penetrates the space surrounding the core due to the core
saturation and the non-periodic components of fluxes. Hence, three-dimensional
description is necessary.

In transients, after the application of supply voltages, the currents in the
transformer windings are not known in advance, i.e. prior to the field calculation
(Nowak, 1995; Nowak and Kowalski, 1996). Therefore, the equations describing the
transient three-dimensional field must be coupled with the equations of the electric
circuits of the transformer.

In this paper, an algorithm for coupled field-circuit simulation of transients in a
three-phase, three-limb power transformer is presented. The non-linearity and

The Emerald Research Register for this journal is available at The current issue and full text archive of this journal is available at

www.emeraldinsight.com/researchregister www.emeraldinsight.com/0332-1649.htm

This is a revised and enhanced version of a paper which was originally presented as a conference
contribution at the XVII Symposium on Electromagnetic Phenomena in Nonlinear Circuits
(EPNC), held in Leuven, Belgium, on 1-3 July 2002. This is one of a small selection of papers from
the Symposium to appear in the current and future issues of COMPEL.

COMPEL
23,4

1100

Received September 2002
Revised March 2003
Accepted March 2003

COMPEL: The International Journal
for Computation and Mathematics in
Electrical and Electronic Engineering
Vol. 23 No. 4, 2004
pp. 1100-1109
q Emerald Group Publishing Limited
0332-1649
DOI 10.1108/03321640410510811



anisotropy of the transformer core have been considered. A comparative analysis of the
results obtained from the application of the 3D or 2D field models has been carried out.
It has been shown that assuming the simplified 2D field-circuit model, one obtains
significantly overstated peak values of currents.

The effectiveness of the algorithm of 3D magnetic field computations is especially
important in the case of transient simulation. In such simulation, step by step
computations are performed hundreds of times. At each time-step, the computation are
iteratively repeated dozens or more times (due to strong core saturation). Thus, the 3D
magnetic field has to be computed many thousands of times. For that reason, a special
iterative procedure based on the decomposition of the 3D task has been adopted. The
proposed method is much faster (even up to five times) than the standard codes based
on the ICCG algorithm.

2. Iterative procedure for 3D magnetic field calculation
The magnetic vector potential (MVP) for 3D magnetic field description has been
employed (Demerdash et al., 1981; Preis et al., 1990). In a non-homogeneous
environment, the MVP distribution is described by the following equation:

curl n curlA ¼ J ð1Þ

where J is the current density vector, n is the reluctivity.
After imposing the Coulomb’s gauge divA ¼ 0; the components of vector equation

(1) can be written as:

divðn gradAuÞ ¼ 2J u þ grad n ·
›A

›u
ð2Þ

where u ¼ x; y; z: In spite of the Coulomb’s gauge, in non-homogeneous areas the
magnetic vector potential components are associated with one another. Therefore, the
formulation without gauging has been applied (Biro et al., 1996).

The problem becomes more complicated in the case of anisotropic material.
Assuming orthogonal anisotropy, the x-component of equation (1) takes the following
form:

›

›y
nz
›Ax

›y

� �
þ

›

›z
ny

›Ax

›z

� �
¼ 2J x þ

›

›y
nz
›Ay

›x

� �
þ

›

›z
ny

›Az

›x

� �
ð3Þ

where ny and nz are the reluctivities in y and z directions.
Numerical implementation of the algorithm is based on the spatial finite element

method. A special block-relaxation algorithm has been proposed. In the algorithm, the
3D task has been decomposed and substituted with a sequence of “quasi-2D” problems
(Nowak, 1995). Decomposition consists of apparent separation of the vector potential
components and space division into layers. Mutual connections between vector
potential components are considered iteratively. The division into layers is performed
using ns surfaces. On each surface discretization is two-dimensional, with triangle
elements constituting the bases of the prism located between two adjoining surfaces
(Figure 1).

The elements of the stiffness matrix of the FEM equations SA ¼ VJ concerning the
MVP can be arranged into 3ns £ 3ns sub-matrices Spq

uw; which describe connections
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between the uth and wth MVP components in pth and qth surfaces
ðq ¼ p 2 1; p; p þ 1Þ (Nowak, 1995). The basic iterative block relaxation formula can
be written in the following form:

Spp
uu Ap

u

� �
mA

¼ Vp
uJ

p
u 2

Xq¼pþ1

q¼p21 w¼x;y;z

X
Spq

uw v Aq
w

� �
l
þð12 vÞ Aq

w

� �
l21

n o
ð4Þ

where v [ k1; 2l is the convergence coefficient, m is the iteration number, l ¼ m or
l ¼ m 2 1: Equation (4) makes it possible to calculate Ap

u

� �
m
; i.e. the uth MVP

component in the pth surface in the mth basic iteration. There are 3ns such equations.
To solve equation (4) for each component and each surface, Cholesky’s non-iterative
method has been applied.

The structure of system (4) corresponds to the structure of differential equations (2)
and (3). The first term on the right-hand side of equation (4) represents the field
sources. The remaining terms are known from the current or previous iteration
(Nowak, 1995).
In order to improve the convergence of the iterative process, the division into layers
should be carried out by surfaces possibly perpendicular to the direction of the
predominant component of the potential A. Owing to core lamination, the magnetic
field in the region of core length in the transformer is nearly two-dimensional with the
domination of component Az perpendicular to the sheets plane (Figure 2). The division
into layers should be performed by planes z¼ const.

3. Non-linearity
The algorithm consists of two iterative procedures: the basic procedure for the solution
of the sequence of 2D problems, and the superior procedure taking non-linearity into
consideration. The “chord” iterative process has been adopted. In the case of transient
states, an additional time-stepping process has been applied.

In the non-linear case, sub-matrices Spq
uw must be computed at each non-linear

iteration. In such a case, computer time consumption depends, to a high extent, on the
procedures of stiffness matrix formation. Therefore, each of sub-matrices Spq

uw is

Figure 1.
Space division
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represented as a sum of several contributory sub-matrices. The elements of the ith row
of these constituents represent contributions from all prisms with common node Qi.
The contributory sub-matrices are computed only once at the beginning of iterative
calculations, assuming reluctivity nx ¼ ny ¼ nz ¼ n0; and they are stored in this form
in computer memory. Consequently, the time-consuming process of sub-matrices Spq

uw
formation is, with each iteration, replaced with the simple operation of summing the
contributions. This reduces the computation time considerably (Nowak, 1995).

4. Electric circuit equations
After the application of the Cranck-Nicolson scheme, Kirchhoff’s equation describing
the ith winding at the nth instant can be written in the following discrete form (Nowak
and Kowalski, 1996):

ci;n 2 ci;n21 þ 0:5DtRiii ¼ 0:5Dt ui þ
dc

dt

����
n21

� �
; i ¼ 1; 2; 3 ð5Þ

where Ri is the resistance and ci is the flux linkage.
Since the problem is linearized at separate non-linear iterations, the principle of

superposition can be adopted. Let vector Aj0 denotes the MVP distribution generated
from the provisionally assumed sample current i0 in the jth winding, while the currents
in the remaining windings are equal to zero, and let cij0 denotes the magnetic flux
linked with ith winding coming from current i0 in the jth winding. Then, the total ith
magnetic linkage can be expressed as follows:

ci ¼
X3
j¼1

ljcij0 ð6Þ

where lj is the ratio of real (unknown) current ij in the jth winding to the sample
current i0. Finally, the system of Kirchhoff’s equation can be written in the following
form:

X3
j¼1

ljcij0 þ li0:5DtRii0 ¼ ci;n21 þ 0:5Dt ui þ
dc

dt

����
n21

� �
ð7Þ

Figure 2.
The transformer core
division into layers
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After solving equation (7) with respect to lj, the MVP global distribution at the nth
time step and kth iteration can be found

An ¼
X3
j¼1

ljAj0 ð8Þ

In the linear case, three contributory distributionsAj0 and nine contributory fluxes cij0

have to be found but only at the first time-step. At the next time-steps the field
calculations are not necessary. The procedure corresponds to the equivalent circuit
method with self-inductances and mutual inductances.

The task becomes more intricate in the non-linear case. During the transient
state the reluctances of the individual parts of the transformer core vary at
successive time-steps and, as a result, the set of stiffness sub-matrices Spq

uw also
changes. The contributory distributions Ak

i0;n must be computed at each time-step
and even at each non-linear iteration. In the algorithm, the real values of currents
are also calculated iteratively. After computing contributory distributions Ak

i0;n; the
set of Kirchhoff’s equations is solved and coefficients lk

jn; i.e. currents ikjn ¼ lk
jni0

are determined. Next, using equations (6) and (8), the fluxes c k
in and the field

distribution Ak
n; are computed. Finally, the distribution of the magnetic flux

density and reluctivities of individual spatial finite elements are calculated.
At successive non-linear iterative steps, the field sources are constant

corresponding to sample currents i0 in separate windings. Therefore, the field
distributions Ak

i0;n at successive time steps, and especially at successive non-linear
iterations, are very close to one another. Thus, it is very convenient to assume the field
distributions from the previous non-linear iteration to be the initial approximation of
the basic iterative procedure, i.e.:

Ak
j0;n

� �
m¼0

¼ Ak21
j0;n ð9Þ

where m is the number of block iterations. This significantly decreases the number of
basic iterations (Nowak and Kowalski, 1996).

5. Transformer transients
A transformer of power Sn ¼ 160 kVA and voltage Un ¼ 20=0:525 kV on no-load
operation has been investigated. The transient state after the application of the supply
symmetric voltage system:

ujðtÞ ¼
ffiffiffiffiffiffiffi
2=3

p
U sin ð100pt þ 2p=3ð j 2 2Þ þ wuÞ

has been considered. Here, j denotes the number of windings and at the same time –
the number of transformer limbs (the central limb is the second one). This case
corresponds to delta connected or zero-star connected windings.

Zero-boundary conditions: AxB ¼ AyB ¼ AyB ¼ 0 have been assumed. The
boundary surfaces in the proper distance from the transformer have been chosen.
Owing to symmetry, only the half of the transformer has been considered. The origin of
the coordinate system is situated on the symmetry plane z ¼ const:; which overlap the
central sheet of the core. The conditions on this initial plane (z¼ 0) are:

Ax ¼ Ay ¼ 0; ›Az=›n ¼ ›Az=›z ¼ 0:
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Figure 3(a) and (b) shows the current waveforms after the application of the voltage
U ¼ 0:3Un (the phase angle wu ¼ 0), where Un ¼ 20 kV is the rated value. The
computations have been carried out using the 3D model (case “a”) and next using the
2D description (case “b”). In both 3D and 2D models, the discretization remains
unchanged. In the case of the two-dimensional model, the computation has been
performed using formula (4), but only for u ¼ z and only for one chosen surface
z ¼ const:which includes a ferromagnetic core. The second term on the right-hand side
of equation (4) has been disregarded. The equivalent length of the 2D model is therefore
equal to the core thickness.

The corresponding current waveforms for higher voltage U ¼ 0:8Un; are shown in
Figure 4(a) and (b).

The peak values of transient currents depend strongly on the supply voltage. For
U ¼ 0:3Un; the peak value of current i2max is equal to 0.10 A for the 3D model and
0.12 A for the 2D model. Assuming U ¼ 0:8Un, one obtains i2max ¼ 40:7A for the 3D
model and i2max ¼ 69:2A for the 2D description.

Owing to the core saturation, in the case of voltage 0.8Un the currents are hundred
times greater. It goes without saying that the peak value depends on the voltage phase

Figure 3.
Current waveform after

the application of supply
voltage U ¼ 0.3Un, wu¼0,

for: (a) 3D and (b) 2D
models

3D and 2D
field-circuit

models
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angle. For wu ¼ p=2 (U ¼ 0:8Un; 3D model) the current i2max decreases to a small
value of 2.29A. The greatest peak value of current occurs in the first winding:
i1max ¼ 230:7A (Figure 5).

The most unfavourable condition occurs for wu ¼ 2p=3 (Figure 6). In this case,
u3ð0Þ ¼ 0; while in the case presented in Figure 4(a), the voltage u2ð0Þ ¼ 0: The peak

Figure 4.
Current waveform after
the application of supply
voltage U ¼ 0.8Un, wu¼0,
for: (a) 3D and (b) 2D
models

Figure 5.
Current waveform after
the application of supply
voltage U ¼ 0.8Un, for
wu¼p/2 (3D model)
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value is greater and equal to i3max ¼ 43:4A: The difference stems from the asymmetry
of the transformer core; the central winding is linked to a greater flux than the side ones.

In order to validate the proposed algorithm, the measured waveform of the current
i3(t) has been shown in Figure 6. Both waveforms, the calculated and the measured,
nearly overlap.

As noticed, the peak values of transient currents depend strongly on the supply
voltage. Figure 7 shows the peak value i2max versus the voltage U/Un, for 2D and 3D
models, assuming the angle wu ¼ 0: The difference Di2max between the results
obtained in 2D and 3D models also depends on the supply voltage (Figure 8). This
difference is slight for small values of voltage. In this case, the transformer core is not
saturated and, therefore, the magnetic field outside the core is negligible. With the
growth of voltage, the difference Di2max also increases. The core becomes saturated and
a considerable magnetic field occurs in the space outside the core. The field becomes
three-dimensional (Figure 9). The two-dimensional model does not ensure sufficient
accuracy. The incorrectness reaches (for U ¼ 0:6Un) a value of up to 242 per cent.

For U. 0.6Un, the difference between the peak values obtained in 2D and 3D
models decreases as shown in Figure 8. For greater values of supply voltage, the
transformer core becomes temporarily and strongly saturated during the transients.

Figure 6.
Current waveform after

the application of supply
voltage U ¼ 0.8Un, for
wu¼2p/3 (3D model)

Figure 7.
Peak value i2max obtained

in 2D and 3D models
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The instantaneous inductances reach very small values and the winding resistances
dominate. The inaccuracy of the field computation is of less importance.

Figure 9 shows the distribution By(x,z) of the y-component of the magnetic flux
density (component parallel to the limb axes) in the plane y ¼ const: crossing the limbs
perpendicularly in the middle. Three-dimensionality of the magnetic field can be
observed.

6. Conclusions
The elaborated algorithm and computer code can be an effective tool for transient
analyses of electromagnetic devices. It enables analyses of the voltage-excited,
three-dimensional magnetic field taking the non-linearity and anisotropy of
ferromagnetic cores into consideration. The proposed algorithm, after introducing
the electric potential, may be successfully extended to include currents in massive
parts of the device.

It has been shown that a two-dimensional model of the transient electromagnetic
phenomena in a power transformer does not ensure sufficient accuracy. The difference
between peak values of transient winding currents obtained by using 2D and 3D
models can reach hundreds of percents.

Figure 8.
The difference between 2D
and 3D results

Figure 9.
Magnetic flux distribution
in the transformer
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Abstract This paper presents the finite element method for the calculation of open-circuit
characteristic of a squirrel cage machine with saturated core. The flux linkage with the stator
winding and the winding inductances have been calculated using the edge element method. The
calculations show that the equivalent inductance of a balanced three-phase no-loaded induction
machine with saturated core may be defined like a quadrature-axis inductance in synchronous
machine. The algorithm of this inductance calculation has been proposed. The equivalent
inductances have been used in the calculation of electromotive force. The results obtained from
numerical calculations have been compared with the measured results.

1. Introduction
The development of numerical techniques and growth of computer capacities make it
possible to apply the method of 3D field simulation to the analysis of induction motor
performance. Recently, the coupled field-circuit formulations are developed (Matsubara
et al., 1995; Piriou and Razek, 1990; Williamson, 1994). The coupled field-circuit model
includes the field and circuit equations which describe the windings connections and
the supply system. Moreover, in the analysis of electromechanical transients, these
equations are coupled through the electromagnetic torque to the equation of motion
(Demenko, 1999; Demenko and Nowak, 1996).

The coupled field-circuit formulation can be successfully applied in the calculation
of open-circuits characteristics. In the open-circuit test, the magnetic field is
voltage-excited, and this means that in the machine with saturated core, the winding
currents are not known in advance, i.e. prior to the calculation of field distribution.
Therefore, the Kirchhoff’s equations for stator winding should be included and the
time-stepping method should be applied.

A significant disadvantage of the field-circuit formulation is that it takes two or
more orders of magnitude more CPU time than the algorithm for solving the finite
element equations only. In order to reduce the computation time, the authors propose to
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apply the simplified method of magnetization characteristic calculation. The
characteristic is formed on the basis of the solution of finite element equations for
the given values of stator winding currents.

2. Edge element model
The applied edge element model of a squirrel cage machine is similar to that presented
in Demenko (1999).

The rotor of the considered machine has skewed slots. Therefore, the machine
is cut into m disks (sections) along the z axis parallel to the shaft. Each of the
section shows the rotor in a different position with respect to the stator. The
sections are divided into nine-edge prisms and 12-edge curved rectangular
parallelepipeds. The trace of the elements in the x, y-plane is a grid with triangles
and curved rectangles.

The edge element equations have been written as follows

kT
e Skew ¼ u; ð1Þ

where S is the reluctance matrix for facet elements, w is the vector of edge values of A,
and the matrix ke transforms the edge values of A into the facet values of flux density
B. The entries of ke are equal to 1, 0 or 21, and depend on the position of the edges in
relation to the facet. The matrix ke is the discrete form of curl operator (Bossavit, 1988).
For the three-phase system of phase currents i1, i2, i3 the right side vector u may be
defined as follows

u ¼ ½N 1 N 2 N 3�

i1

i2

i3

2
664

3
775; ð2Þ

where the vector N u ðu ¼ 1; 2; 3Þ transforms the phase current iu into the ampere-turns
associated with the edges (Bouissou and Piriou, 1994).

The formulation of the vector Nu has strong effect on the convergence of the
iteration procedure of solving equation (1) for the ungauged edge element approach.
In order to obtain good convergence, the discrete form of the current continuity
equation should be exactly satisfied, i.e. the entries of the product G TNu should be
exactly equal to zero, where G T is the discrete form of div operator in relation to the
nodes of the conjoint set of elements (Ren, 1996). To satisfy this condition the source
terms are usually expressed by the edge values of current vector potential T. These
edge values represent the loop currents that flow in the closed paths around the edges.
Here, the source terms are also calculated on the basis of the loop currents. The method
presented in Demenko et al. (2001) has been applied. The vector Nu can be used in the
calculations of flux linkage with the phase winding. The flux linkage with the uth
phase may be found from the expression

cu ¼ N T
uw; ð3Þ

which is the numerical representation of line integral
R
A dl along the loop which

defines the phase winding.
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3. Calculation of stator winding inductances
The stator winding inductance Lu,v has been defined as follows

Lu;v ¼
cv

iu
: ð4Þ

Here, cv is the flux linkage with the vth phase winding for the system which is excited
by the uth phase current iu,

cv ¼ N T
v wu; ð5Þ

where wu is the solution of equation (1) for u ¼ uu ¼ N uiu: If the inductances are
affected by saturation then Lu;v ¼ Lu;vði1; i2; i3Þ; and we must solve equation (1) twice.
First, we solve non-linear edge element equations,

kT
e ½SðwÞ�kew ¼ N 1i1 þ N 2i2 þ N 3i3; ð6Þ

and we determine reluctance matrix S(w). Then the linear edge element equations of
S ¼ SðwÞ are solved,

kT
e ½SðwÞ�kewu ¼ N uiu: ð7Þ

It has been assumed that the phase currents iu are sinusoidal, i.e.

iu ¼ I s

ffiffiffi
2

p
sin vt 2 ðu 2 1Þ

2

3
p

	 

; ðu ¼ 1; 2; 3Þ; ð8Þ

where Is is the rms value of phase current. As a result, the inductance Lu,v has been
expressed as a function of vt and Is, i.e. Lu;v ¼ Lu;vðI s;vtÞ:

The calculations have been performed for vt ¼ kp=252 ðk ¼ 1; 2; 3; . . .; 504Þ and for
different values of Is. Figure 1 shows the calculated waveforms of self inductance L1,1,
however Figure 2 shows the calculated waveforms of mutual inductance L2,3, for all
considered values of the amplitude of current.

The results presented in these figures show that the considered functions can be
approximated by Fourier series of the following form

Lu;u ¼
k¼0;1;2;...

X
L2kðI sÞcos 2k vt 2 ðu 2 1Þ

2

3
p

	 

ðu ¼ 1; 2; 3Þ; ð9aÞ

L2;3 ¼
k¼0;1;2;...

X
M 2kðI sÞcos 2kðvtÞ; ð9bÞ

L1;3 ¼
k¼0;1;2;...

X
M 2kðI sÞcos 2k vt 2

2

3
p

	 

; ð9cÞ

L1;2 ¼
k¼0;1;2;...

X
M 2kðI sÞcos 2k vt 2

4

3
p

	 

: ð9dÞ

Here, L2k and M2k, are the amplitudes of the kth harmonic. The values of the
amplitudes depend on the value of Is, i.e. L2k ¼ L2kðI sÞ and M 2k ¼ M 2kðI sÞ (Figure 3).
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It is interesting to notice that the presented functions are similar to functions which
describe the inductances of armature winding in synchronous machine with salient
poles ( Jones, 1967).

4. Electromotive force
The inductances described earlier can be used in the calculation of flux linkage with
the uth phase winding,

cu ¼
X3

v¼1

Lu;viv: ð10Þ

From this relation, using equations (8) and (9), we obtain

cu ¼
k¼0;1;2...

X 1

2
L2kþM 2kcos

2

3
pð2k21Þ

	 
� 
sinð2kþ1Þ vt2

2

3
pðu21Þ

	 
8<
:
2

k¼0;1;2...

X 1

2
L2kþM 2kcos

2

3
pð2kþ1Þ

	 
� 

� sinð2k21Þ vt2
2

3
pðu21Þ

	 
) ffiffiffi
2

p
I s

ð11Þ

Let us consider the first harmonic of cu(vt). The amplitude of this harmonic is

Figure 1.
Self inductance L1,1 as a

function of vt
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Figure 2.
Mutual inductance L2,3 as
a function of vt

Figure 3.
Amplitudes of harmonics
of L11(vt)
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cum ¼
ffiffiffi
2

p
I sLq; ð12aÞ

where

Lq ¼ L0 2 M 0 2
1

2
L2 2 M 2: ð12bÞ

The equivalent inductance in equation (12) is defined similar to the quadrature-axis
inductance of an armature winding in reluctance machine. Therefore, we have applied
the theory of reluctance machine to explain the model of no-loaded induction machine.
The no-loaded induction machine with the core affected by saturation may be
represented by reluctance machine which operates with torque angle equal to p/2
(Figure 4). The difference between the direct-axis and quadrature-axis inductance
depends on the rms value of phase current. If this value is small, the rotor of equivalent
reluctance machine is cylindrical (case “a” in Figure 4).

The rms value of electromotive force in the stator winding of equivalent machine is
defined as follows

Es ¼ I svLq ¼ I sXq: ð13Þ

Thus, if we determine the inductance Lq we can calculate the electromotive force.
The inductance Lq is expressed in terms of two components of functions Lu,v(vt).

Figure 4.
Equivalent reluctance

motor
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The trigonometric approximation of Lu,v(vt) on the three data points (vt1 ¼ 0; vt2 ¼
p=4; vt3 ¼ p=2) gives us these components. As a result, we obtain the following
formula

Lq ¼
1

12
Lð1Þ

1;1 þ 4Lð2Þ
1;1 þ 7Lð3Þ

1;1

� �
2

1

6
5Lð1Þ

2;3 þ 2Lð2Þ
2;3 2 Lð3Þ

2;3

� �
; ð14Þ

where LðiÞ
u;v are the values of inductance Lu,v for iu ¼ iuðI s;vtiÞ ¼

I s

ffiffiffi
2

p
sin vti 2

2
3 ðu 2 1Þp

� �
; ðu ¼ 1; 2; 3Þ (vt1 ¼ 0; vt2 ¼ p=4; vt3 ¼ p=2).

5. Results
The presented method has been successfully applied for the calculation of the
magnetization characteristic of a squirrel cage motor. The three-phase, four-pole, 3 kW
machine of Sg 100L-4B type has been considered. The rated data of the motor are:
UN ¼ 220=380 V ðD=YÞ; f N ¼ 50 Hz; IN ¼ 12:0=6:9 A; nN ¼ 1;415 rpm: The winding
data are as follows: 36 stator slots, 28 rotor slots, single-layer stator winding. The
cross-section of the machine may be found in Demenko and Nowak (1996). Table I
shows the results of reactance Xq calculation. The results for approximation on the 504
and three data points have been compared.

The rms value of electromotive force can be obtained from equation (13), using
the data in Table I. For example, if I s ¼ 5:2 A then Es ¼ 229:42 V (for three data
points) Es ¼ 229:48 V (using 504 data points). The resistance of stator winding is
2.27V. Thus, the calculated value of line voltage is U ¼

ffiffiffi
3

p
229:72 V (for three

data points) at I s ¼ 5:2 A:
We have also considered the field-circuit formulation presented in Demenko (1999).

This formulation can be successfully used in the calculations of current waveforms for
no-load test, i.e. when three-phase balanced voltage is applied to the stator and the
machine is allowed to run with synchronous speed. However, a disadvantage in using
the field-circuit formulation is that it takes more computer time. In order to obtain the
results for steady state we must analyse the transients.

The calculations have been performed for the stator winding connected in star and
for the rms value of line voltages U equal to

ffiffiffi
3

p
230 V at rated frequency. We obtained

I s ¼ 5:21 A and Es ¼ 229:69 V: The measured rms value of magnetizing current
at U ¼

ffiffiffi
3

p
230 V is equal to 5.18 A. Thus, for the considered point of magnetization

characteristic we obtained:

(1) U ¼
ffiffiffi
3

p
230 V and I s ¼ 5:18 A from measurement;

(2) U ¼
ffiffiffi
3

p
230 V and I s ¼ 5:21 A from the calculation using the field-circuit

formulation; and

(3) U ¼
ffiffiffi
3

p
229:72 V; I s ¼ 5:2 A from the calculation using the proposed method.

The results presented earlier are related to the first harmonic of calculated waveforms.
However, if the stator winding currents are sinusoidal then the electromotive force

Is (A) 2.0 5.2 7.5 10.0 12.5 15.0
Xq (V) – 504 data 71.51 44.13 32.56 25.59 21.23 18.25
Xq (V) – three data 71.52 44.12 32.51 25.54 21.19 18.21

Table I.
Calculated values of
reactance Xq
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waveform contains high harmonics, due to the saturation. Figure 5 shows the
calculated waveform of electromotive force with all harmonics given by series (11). It
can be seen that the waveform is deformed by harmonics. However, the calculations
show that the rms value of the presented poliharmonic waveform is very close to the
rms value of its first harmonic.

The relative differences between the rms values have been defined by factor kh;
kh ¼ Eshar=Es; where Eshar is the rms value of electromotive force waveform with the
high harmonics. The calculated values of kh are as follows: kh ¼ 1:0035 for I s ¼ 5:2 A;
kh ¼ 1:0042 for I s ¼ 10:0 A; kh ¼ 1:0038 for I s ¼ 12:5 A, kh ¼ 1:0033 for I s ¼ 15:0 A:

Thus, the rms value of the electromotive force waveform may be determined by the
rms value of its first harmonic.

6. Conclusions
This paper shows that the magnetizing characteristic of an induction machine can be
successfully calculated using the standard package for edge element method. In order
to obtain one point of this characteristic, we should solve the edge element equations
for three instantaneous values of phase currents, i.e. for iu ¼ I s

ffiffiffi
2

p
sin ð2ð1 2 uÞp=3Þ;

iu ¼ I s

ffiffiffi
2

p
sin ðp=4 þ 2ð1 2 uÞp=3Þ iu ¼ I s

ffiffiffi
2

p
sin ðp=2 þ 2ð1 2 uÞp=3Þ ðu ¼ 1; 2; 3Þ:

It is interesting to notice that the no-loaded induction machine with the core affected
by saturation may be represented by reluctance machine which operates with torque
angle equal to p/2. The magnetizing inductance of the saturated induction machine
may be defined similar to the quadrature-axis inductance of an armature winding of
reluctance machine. The presented model with quadrature-axis inductance Xq can be

Figure 5.
Calculated waveforms of

electromotive force,
Is¼5.2 A
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used in the analysis of all type of asynchronous and synchronous machines with
non-salient rotor.
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Abstract This paper demonstrates how the 3D edge element method can be applied to the
analysis of permanent magnet motors. The edge element method using the vector magnetic
potential has been used. Special attention has been paid to the analysis of systems with
inhomogeneously magnetized permanent magnets. The magnets are not skewed and are mounted
on a cylindrical laminated rotor. Calculations have been performed for different magnet widths
and different distribution of the magnetization vector. Brushless motors with radially and
inhomogeneously magnetized magnets have been compared.

1. Introduction
Among various configurations of PM brushless machines, two main groups are most
commonly distinguished: motors with a trapezoidal back-emf, known as brushless DC
(BLDC) motors, and motors in which the back-emf is approximately sinusoidal. The
latter, known as brushless AC synchronous motors (PMSM) and usually applied in
drives where smooth torque is highly desirable, are the subject of this study (Ishikawa
and Slemon, 1993; Jahns and Soong, 1996). Any discrepancy from ideal conditions in
either motor structure or associated power converter, typically gives rise to undesired
torque pulsations. Sources of torque ripple are threefold: connected with the air-gap
flux distortion from the target shape, cogging torque caused by the slotted structure of
the armature, and commutation torque from the inductive effect of phase windings (Cai
et al., 2000). Optimal motor design requires a detailed analysis of torque.

The applications of the 3D edge element method for the analysis of permanent
magnet motors are presented by Demenko (1998) and Kawase et al. (1995), where
systems with homogeneously magnetized permanent magnets are analysed. The
author of this paper has extended the application possibilities of the 3D edge element
method by developing an algorithm for the analysis of machines with
inhomogeneously magnetized permanent magnets. Systems with inhomogeneously
magnetized permanent magnets are well known and have been widely studied (Cai et al.,
2000; Marinescu and Marinescu, 1992; Nogarede and Lojoie-Mazenc, 1991). However,
these magnets have only been examined by means of a 2D method. The novelty of this
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paper lies in the algorithm for the analysis of electric machines with inhomogeneously
magnetized permanent magnets by using a 3D method.

2. Edge element equations
In order to describe the distribution of the magnetic field, the edge element method
using the vector magnetic potential A has been applied. The considered region is
subdivided into edge elements and the field equations are approximated by algebraic
equations with an unknown vector w of the edge values of A. These equations may be
written in the following matrix form:

Sw ¼ Ni þ F ; ð1Þ

where S is the stiffness matrix of the edge element model, N is the matrix that
transforms the winding currents i into the ampere-turns associated with the edges, and
F is the vector of magnetomotive forces in the permanent magnet region (Demenko,
2000).

The matrix N can be used in the calculations of flux linkage with a phase winding.
The flux linkage with a three-phase system may be found from the expression:

C1

C2

C3

2
664

3
775 ¼

N T
1

N T
2

N T
3

2
6664

3
7775

w1

..

.

w i

..

.

wn

2
66666666664

3
77777777775
; ð2Þ

where N T
q ¼ ½Nq1 . . . Nqj . . . Nqn� ðq ¼ 1; 2; 3Þ: The entry Nqj of the vector N T

q is
the number of conductors of the qth winding associated with the ith edge. Here, the

vector w is the solution to equation (1) and therefore, the vector C can be written as
follows:

C ¼ Cm þCu ¼ N Twm þ N Twu: ð3Þ

The first component of this equation represents flux Cm generated by permanent
magnets. The second element represents flux Cu created by the phase winding. The
vector wm is the solution to equation Swm ¼ F ; whereas wu is the solution to equation
Swu ¼ Ni:

3. Calculation of electromagnetic torque
Electromagnetic torque has been calculated using the finite element model with a
moving mesh. In the model, the entire volume is divided into two sub-volumes, one
moving and the other stationary. In rotational machines, the stationary region is
assigned to the stator, whilst the moving region rotates with the rotor. A transition
band (a mutual connection band) is produced between these parts. All energy
(co-energy) changes result from the modifications of band reluctances. The energy
stored in the band can be presented as follows:
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W mb ¼

Z w

0

ðSbwbÞ
T dwb: ð4Þ

For the air-gap the integral gives

W mb ¼
1

2
wT

b Sbwb; ð5Þ

where Sb is the stiffness submatrix related to the band, and wb is the vector of the edge
potentials of the band.

The stator core has been divided into 9-edge and 12-edge elements. The nine-edge
prisms have been used to represent the rounded corners of slots. The rotor core,
permanent magnets and air-gap have been divided into 12-edge curved rectangular
parallelepipeds. The author has applied the model proposed by Demenko (2000).
The element edges are parallel to the axis of a cylindrical co-ordinate system r, z, u.
A circular band of regular 12-edge elements is placed inside the air-gap (Figure 1).
The trace of the elements in the plane perpendicular to the z-axis is the grid with
quadrangles of identical angular length of the base b. The band is subdivided into
layers of thickness Dli (Figure 1). It is assumed that the boundary of the moving area is
the surface r ¼ ris (Figure 1).

Figure 1.
Permanent magnet motor
and part of the band with

regular elements
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In the presented method, the stiffness submatrix Sb related to the band is a function of
the rotor position a. A trigonometric polynomial is applied to form this function. The
polynomial is based on the data for the discrete rotor position ai ¼ 2ip=m ¼ ib;
i ¼ 0; 1; 2; . . .;m 2 1 (Demenko, 2000).

Electromagnetic torque is calculated on the basis of the virtual work principle.
According to this principle, electromagnetic torque is equal to the magnetic energy
derivative versus the virtual moving, i.e.:

TðaÞ ¼ 2
›W mbðaÞ

›a
: ð6Þ

Substituting equation (5), equation (6) becomes:

T ¼ 2
1

2

›

›a
wT

b SbðaÞwb

� 	
: ð7Þ

The matrix Sb(a) includes the following components:

SbðaÞ ¼
Sbs SsrðaÞ

S
T
srðaÞ Sbr

" #
; ð8Þ

where Ssr is the submatrix of Sb(a) which describes the interconnections between the
rotary and stationary edges of the band. The submatrices Sbs and Sbr are independent
of the discrete rotor position.

In the case of movement simulation of the band interpolation technique, equation (7)
becomes:

T ¼ 2wT
bsSsr0

dkðaÞ

da
wbr; ð9Þ

where wbs is the vector of the edge values of A on the boundary between the band and
the stator region, wbr relates to the other edges of the band. Ssr0 is the matrix of the
initial rotor position: Ssr0 ¼ Ssrða ¼ 0Þ; and k (a) is the rotation matrix obtained on the
basis of the interpolating trigonometric polynomial.

In the model with a band of regular elements, electromagnetic torque can also be
expressed as follows:

T ¼ 2
1

2b
½W ðai ^ bÞ� ¼ 2

1

2b

1

2
wT

bsSsrðai ^ bÞwbr

� 
: ð10Þ

This is the difference representation of formula (6) for a ¼ ai: Here Ssrðai ^ bÞ
represents the matrix Ssr for a ¼ ai þ b and a ¼ ai 2 b: Thus:

Sðai þ bÞ ¼ SðaiÞkb; ð11aÞ

Sðai 2 bÞ ¼ SðaiÞk
T
b : ð11bÞ

As a result we obtain:

T ¼ 2
1

2b
wT

bsSsrðaiÞ kb 2 kT
b

� �
wbr: ð12Þ
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This method of electromagnetic torque calculation guarantees good accuracy. If the
rotor region is empty, i.e. the density of magnetising and conducting currents is equal
to zero, and is subdivided into bands of regular elements similar to the band placed
inside the air-gap, the torque calculated from equations (9) and (12) is exactly equal to
zero.

Electromagnetic torque can be also calculated from the formula:

T ¼ 2
DW

Da
¼ 2

1

2a
iT½Cðai ¼ aÞ2Cðai ¼ 2aÞ�: ð13Þ

For a ¼ b, equation (13) is the circuit equivalent of equation (12).
If equation (13) is applied, the field calculations are performed only once. From the

calculations we obtain the vector C depending on the rotor position. The method can
be considered as a circuit-field approach. The method can be successfully applied in the
case of a non-saturated system.

4. Results
A four pole motor with six slots per pole has been designed. Permanent magnets are
not skewed and are mounted on a cylindrical laminated rotor (Demenko, 1998).
A single-layer winding is composed of four multi-turn coils per phase. The coils are
connected in series. The dimensions of the motor are shown in Figure 1. Three-phase
stator windings are star connection. The motor is equipped with rare-earth NdFeB-type
permanent magnets (material VACODYM 370, Catalogue Vacuumschmelze GMBH,
1996). The demagnetisation curve of permanent magnets is approximated by a linear
function with slope m0, where m0 is the permeability of the free space. Thus, the
model of the motor has non-salient poles. It has been assumed that the motor is fed
from a balanced three-phase current source, i.e. winding currents are iq ¼
Im sin ðvt þ 2 ðq 2 1Þp=3Þ ðq ¼ 1; 2; 3Þ (Demenko et al., 2002). The calculations have
been performed for synchronous speed at the supply of 50 Hz.

Permanent magnets have been divided into sectors (Figure 2(a)-(c)).
Motors with magnets of varying magnetization direction have been analysed. The

vector of magnetization J has two components (Figure 3). The components of the
vector J in the ith sector are defined as follows:

Figure 2.
Permanent magnets

divided into sectors with
(a) radial magnetization,

(b) and (c) inhomogeneous
magnetization
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Jri ¼ Jrm cos
ui21 þ ui

gm
· l

� �
; ð14Þ

Ju i ¼ Jum sin
ui21 þ ui

gm
· l

� �
: ð15Þ

Here ui, gm are the angles shown in Figure 2, and l defines the direction of J in the first
segment.

Motors with different angles gm and l have been analysed. First, motors with
permanent magnets of the angle of gm ¼ 61:58 ðx ¼ 28:58Þ have been investigated. The
calculations have been performed for the following values of the angle l:

(1) l ¼ 608;

(2) l ¼ 458;

(3) l ¼ 308 and

(4) l ¼ 08:

If l ¼ 08; then we obtain a magnet with radial magnetization (Figure 2(a)). Figure 4
shows the results of electromagnetic torque as a function of the rotor position. The
motor with inhomogeneously magnetized permanent magnets shown in Figure 2(b)
gives the same result as the motor with magnetization presented in Figure 2(c). The
calculations show that the torque waveform can be assumed to be independent of
components Ju.

The calculated functions T(a) have been interpolated by trigonometric polynomials
(Figure 5). Figure 5 shows relative amplitudes of the harmonics in relation to 20 per cent
of the constant component.

Figure 3.
Sector of the magnet with
the vector of
magnetization
components

Figure 4.
Electromagnetic torque as
a function of the rotor
position
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An inherent drawback of PM motors is the torque ripple caused by stator and rotor
anisotropy and non-sinusoidal distributions of the stator magnetomotive force and
permanent magnet flux density. This torque fluctuation causes vibrations and acoustic
noise deteriorates the control performance of the drive. Generally, a PMSM produces
three types of torque: reluctance, cogging and mutual torque. Reluctance torque is
produced from the interaction between the current magnetomotive forces with the
angular variation in the rotor magnetic reluctance. Surface-magnet PM machines
generate almost no reluctance torque. Cogging torque comes from the interaction
between the PM field and armature slots. Mutual torque includes main torque and
harmonic torque. They are produced by the interaction between the PM field and the
armature field due to the phase currents (Cai et al., 2000).

A useful quantity utilised in the analysis of torque in PM machines is the torque
pulsation factor. It can be defined in different ways (Cai et al., 2000). Here, the following
formula is used:

1 ¼
Tmax 2 Tmin

Tav
100 %; ð16Þ

where Tmax, Tmin, Tav is maximum, minimum, and average torque, respectively.
Another useful factor may be introduced if there is need to define the percentage

amount of cogging torque in electromagnetic torque:

t ¼
ðTcog max 2 Tcog minÞ

2Tav
100 %: ð17Þ

The above defined quantities as well as the maximum, minimum, and average torque
values produced by the motor for the cases considered are summarized in Table I.

Mutual torque comes from non-sinusoidal distributions of flux density in the
air-gap. Equation (3) has been solved and the functions Cm(a) (for i1 ¼ i2 ¼ i3 ¼ 0)
have been calculated. The functions Cm(a) have been interpolated by trigonometric

Figure 5.
Relative amplitudes of the
harmonics in relation to 20

per cent of the constant
component
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polynomials and the harmonics of Cm(a) have been obtained. Figure 6 shows relative
amplitudes of the harmonics in relation to 5 per cent of the first harmonic.

Next, magnets with gm ¼ 908 ðx ¼ 0Þ have been applied. This means that the
magnets are joined (Figure 7).

The calculations have been performed for the following values of l:

(1) l ¼ 908;

(2) l ¼ 678;

(3) l ¼ 458:

Figure 8 and Table II present the results of electromagnetic torque. For l ¼ 908 we
have obtained the function T(a) without ripples.

Figure 7.
System composed of
joined magnets

Figure 6.
Relative amplitudes of
the harmonics in relation
to 5 per cent of the basic
harmonic

Tmax (N m) Tmin (N m) Tav (N m) 1 (%) t (%)

T1 31.89 26.45 28.67 18.99 0.30
T2 35.17 27.42 30.83 25.14 1.69
T3 37.62 28.09 32.43 29.36 2.87
T4 39.64 28.63 33.76 32.60 3.73

Table I.
Calculated values of
torque and torque ripples
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5. Conclusions
In this paper, the results of torque calculations in a synchronous permanent magnet
machine with inhomogeneously magnetized magnets have been presented. General
formulae for the 3D modelling of permanent magnets with a variable magnetization
angle have been worked out. Main components of torque pulsations have been
categorised and analysed by means of an algorithm written to be applied to the
analysis of PM machines. The calculation results show that if the magnetization angle
of permanent magnets is selected properly, torque pulsations can be significantly
reduced.
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Adaptive observer of rotor
speed and position for PMSM

sensorless control system
Konrad Urbański and Krzysztof Zawirski
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Technology, Poznań, Poland
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Abstract This paper deals with the problem of rotor speed and position detection in sensorless
permanent magnet synchronous motor (PMSM) drives. A concept based on detecting the back
EMF induced in stator windings was developed and modified. A general structure of an adaptive
observer with the proportional-integral function of a corrector is introduced. The non-stationary
character of the observer presented in this paper requires an adaptive change of observer corrector
settings. Such observer structure was implemented on a DSP system and verified experimentally.
Both simulation and experimental results show good properties of the proposed observer structure.

1. Introduction
Permanent magnet synchronous motors (PMSM) are widely used in industrial drives
due to their high power factor, high torque density, high efficiency and small size.
However, a position sensor such as an encoder or a resolver is required to enable the
effective control of a PMSM. Such sensors increase the overall cost of the drive system
so eliminating the need for their installation might allow new applications of the
PMSM. This scientific problem remains an open question and is the subject for
extensive research in many scientific centres. Several approaches to this problem are
reported in the literature, which are based on state observers (Dodds et al., 1998;
Hamada et al., 1999; Jones and Lang, 1989), extended Kalman filters (Germano et al.,
1994; Parasiliti et al., 1999), sliding-mode observers (Parasiliti et al., 1999; Vittek et al.,
2000) or novel methods of applying motor saliency (Kulkarni and Ehsani, 1992). State
observers and Kalman filters based on a motor model require complex computational
operations to obtain proper accuracy, which always causes problems in real time
operation. Several new approaches apply motor magnetic saliency and detect the rotor
position by measuring phase inductances. These methods provide a real solution at
small speeds and during standstill operation, but requirements with respect to
hardware and software are high.

A new and more general structure of an observer is proposed in this paper. The new
observer structure is based on a modified concept of back EMF detection (Parasiliti
et al., 1999) and introduces a more complex corrector function which differs from the
traditional one. The structure contains a corrector with a proportional-integral function
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instead of the proportional correction used in the Luenberger observer. The
non-stationary character of the observer presented in this paper requires an adaptive
change of observer corrector settings. Such observer structure was implemented on a
DSP system and verified experimentally.

2. Observer structure
Assuming ordinary simplified assumptions, the mathematical model of a PMSM in a-b
orthogonal coordinates can be expressed as follows (Parasiliti et al., 1999; Urbański and
Zawirski, 2000):

dia

dt
¼ 2

R

L
ia 2

1

L
ea þ

1

L
va

dib

dt
¼ 2

R

L
ib 2

1

L
eb þ

1

L
vb

dv

dt
¼

1

J
ðcbia 2 caib 2 TLÞ

du

dt
¼ v

ð1Þ

where ia, ib, ca, cb, ea, eb are the components of stator current, stator flux linkage and
induced back EMF in a-b coordinates, respectively; va, vb are the components of input
stator voltage in a-b coordinates, R and L are the stator windings resistance and
inductance, v and Q are the rotor speed and the position, J is the moment of inertia and
TL is the load torque treated as an external disturbance.

Flux linkages and back EMF are described in equation (2):

Ca ¼ Lia þCf cosQ

Cb ¼ Lib 2Cf sinQ

ea ¼ keCfv cosQ

eb ¼ 2keCfv sinQ

ð2Þ

where Cf is the flux magnitude of a permanent magnet and ke is the constant
coefficient.

As it follows from equations (1) and (2), the motor model with state variables ia, ib, v
and Q is non-linear. All state variables are measurable, but in a concept of drive
without a mechanical sensor (sensorless drive) v and Q should be estimated. A simple
Luenberger observer cannot be applied due to the non-linearity of the motor model and
the presence of a non-measurable external disturbance (load torque). Germano et al.
(1994) proposed an interesting solution which applies a linear observer and avoids the
problem of a non-measurable disturbance. This concept is based on using a motor
model described only by the first two electrical equations in (1) with state variables ia,
ib, input variables va, vb and back EMF ea, eb considered as disturbances. In such a
case, one can write the extended state formulas in a matrix form as equation (3):

_xE ¼ AExE þ BEu; y ¼ CExE

xE ¼ ½ia; ib; ea; eb�
T; y ¼ ½ia; ib�

T; u ¼ ½va; vb�
T

ð3Þ

where the matrices AE, BE and CE can be written as

COMPEL
23,4

1130



AE ¼

2 R
L

0 2 1
L

0

0 2 R
L

0 2 1
L

0 0 0 0

0 0 0 0

2
666664

3
777775 BE ¼

1
L

0

0 1
L

0 0

0 0

2
666664

3
777775 CE ¼

1 0 0 0

0 1 0 0

" #
ð4Þ

It should be noted that in the matrix AE the derivatives of ea, eb were assumed to be
equal to zero for simplicity (Germano et al., 1994; Parasiliti et al., 1999). Such a
simplified formula does not reveal the non-linear character of the observer structure.
In this paper, a significant modification of the observer mathematical description is
proposed. The EMF ea, eb are not assumed to be disturbances but additional state
variables, substituting the mechanical variables v and Q, described by formulas (2) or
(5) and (6)

sin Q̂ ¼ 2
êa

jêj
; cos Q̂ ¼

êb

jêj
ð5Þ

where

jêj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê2
a þ ê2

b

q
; jv̂j ¼

jêj

ke
; ð6Þ

From equation (2) we obtain equation (7) describing the EMF derivatives:

dea

dt
¼ ea

1

v

dv

dt
2 ebv

deb

dt
¼ eb

1

v

dv

dt
þ eav

ð7Þ

Substituting the last two equations in (3) by equation (7) the new extended state matrix
AE is modified to the following form:

AEm ¼

2 R
L 0 2 1

L 0

0 2 R
L

0 2 1
L

0 0 1
v

dv
dt

2v

0 0 v 1
v

dv
dt

2
6666664

3
7777775

ð8Þ

Since four elements in equation (8) contain the speed and its time derivative the system
is non-linear. To avoid this non-linearity, it is proposed that the speed and its
derivative are considered time-varying parameters. For such a system, one can obtain a
modified extended state formula for the observer:
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dîa

dt
¼ 2

R

L
îa 2

1

L
êa þ

1

L
va þ Kiaðîa 2 iaÞ

dîb

dt
¼ 2

R

L
îb 2

1

L
êb þ

1

L
vb þ Kibðîb 2 ibÞ

dêa

dt
¼ êa

1

~v

D ~v

TS

� �
2 êb ~vþ Keaðîa 2 iaÞ

dêb

dt
¼ êb

1

~v

D ~v

TS

� �
þ êa ~vþ Kebðîb 2 ibÞ

ð9Þ

or in a matrix form
_
x̂E ¼ AEx̂E þ BEu þ K½Di� ð10Þ

where the symbol “ ˆ ” denotes the observer variables and symbol “,” denotes the
time-varying parameters.

In equation (9), the speed derivative is substituted with its discreet form (Dv/TS) as
the ratio between the speed change Dv and the sampling time TS. Formulas (9) and (10)
present an ordinary Luenberger observer ( Jones and Lang, 1989) with correction based
on the error between the measured and calculated value of currents. The system is
non-stationary due to time-varying parameters. This fact has a significant influence on
the stability of the observer and the synthesis procedure of the observer corrector
because time-varying parameters require an adaptation of corrector settings. The
correction in an ordinary Luenberger observer is based on the multiplication of an
observer error by constant coefficients, the matrix K in equation (10), and can be called
a proportional correction. The authors proved in their earlier papers (Urbański and
Zawirski, 2000, 2001) that a significant improvement of the observer operation can be
obtained by introducing a corrector with a more complex proportional-integral (PI)
type of function rather than a proportional one. This results in a new general concept of
the observer, whose formula can be written as:

_
x̂E ¼ AEx̂E þ BEu þ F½Di� ð11Þ

where F [Di] is the corrector function of the observer. Figure 1 shows the block diagram
of a general observer structure. The inner structure of the observer depends on the
function F[Di]. In the case of the PI correction, the observer equations take the
following form:

F1½Di� ¼ Kp½Di� þ Ki

Z
½Di� dt ð12Þ

where the matrices Kp, Ki are:

Kp ¼

Kp11 0

0 Kp22

Kp31 0

0 Kp42

2
666664

3
777775 Ki ¼

Ki11 0

0 Ki22

Ki31 0

0 Ki42

2
666664

3
777775 ð13Þ
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On the basis of many simulation tests, a more complex corrector structure with
proportional-double integral (PI2) correction was proposed (Urbański and Zawirski,
2000, 2001):

F2½Di� ¼ Kp½Di� þ K i

Z
½Di� dt þ K ii

Z Z
½Di� dt

� �
dt ð14Þ

where Kp and Ki are as in equation (13) and Kii takes the following form

K ii ¼

Kii11 0

0 Kii22

Kii31 0

0 Kii42

2
666664

3
777775 ð15Þ

The advantage of introducing integral and double integral components of the observer
corrector is that they ensure the astatic character of observation (estimation) during the
transient process, in which fast changes of currents occur. The estimation of back EMF
signals by the observer enables the calculation of the new values of the rotor speed and
position from equations (5) and (6) at each step of algorithm realization.

3. Adaptive procedure
The synthesis of the observer corrector consists in selecting the coefficients values of
the matrices Kp, Ki, Kii in equation (14). Proper selection is of great importance for the
observer stability, static estimation accuracy and good dynamic behaviour. Yet, the
synthesis poses some difficulties due to the non-stationary character of the observer.
The number of selected coefficients equals 12, but fortunately the mathematical model
of the motor assumed in the observer has a symmetrical structure with reference to the
axis a-b. Due to this symmetry, the coefficients of the observer corrector have equal

Figure 1.
General structure of

observer
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values on both the axes, which reduces the number of selected values to six. The
process of synthesis was optimized by means of the random weight change (RWC)
procedure (Burton et al., 1997). This procedure is fast and insensitive to the local
minimum of the optimised criterion. The criterion of observer optimization is
formulated as:

Q ¼

Z t1þt

t1

e2
QðtÞ dt þ DeQðtÞ; ð16Þ

where eQ is the position estimation error, DeQ is the range of the error value changes of
the estimated position during the transient process, t1 and t1 þ t are the time
boundaries of the integral calculation.

The optimization procedure was performed “off line” by simulating a transient
process. The optimization procedure was repeated for different points of operation,
which were determined by the steady state speed value. At each step of optimisation,
the transient process of the step response to speed reference changes in the selected
point of operation was simulated, and during this process the value of the criterion (16)
was calculated in the time range from t1 to t1 þ t: According to the RWC procedure, a
new set of corrector settings is randomly selected at each step, but only the set which
gives estimation improvement (smaller criterion value) is stored. In the procedure, a
dimension of search area (a range of randomly change of coefficient values) must be
determined at each step. In the presented solution, a wide area was assumed at the
beginning of optimisation process and next at the final stage its dimension was
reduced to achieve better accuracy. The flow chart of the RWC algorithm is shown in
Figure 2. As a result of such “off line” optimisation, a set of optimal values of corrector
coefficients is found for each point of operation as shown in Figure 3.

The diagram shows that due to the finite number of points of operation selected
during the optimization procedure, the number of optimal corrector sets found is also
limited. The optimization was performed for six selected speed values only, and,
consequently, the six optimal values for each coefficient were obtained. It follows from
the diagram in Figure 3 that the optimal corrector setting values are functions of speed.
Therefore, proper values of corrector settings for actual speed value must be found “on
line” when the observer procedure is carried out. In this paper, a procedure of “on line”
interpolation was proposed to find coefficients values for the actual value of speed.
This paper proposes a fuzzy logic base interpolator with six membership input
functions determined in the whole range of speed control. These membership functions
suit the steady state values of speed for which the optimization process was performed,
which means that only six fuzzy rules (input membership functions) for each
coefficient must be determined. The input membership functions are shown in Figure 4.
At each step of the observer calculations, a set of optimal settings is determined by
means of the fuzzy interpolation procedure, which uses the Mamdani implication
method and defuzzification by the height method (Drinakov et al., 1993). The input
signal for the interpolator is the value of speed estimated at the preceding step of the
calculation. For this input signal at each step of observer procedure, only two fuzzy
rules are “fired” with degree of membership, which depends on signal value. This
process is shown in Figure 4. Determination of the degrees of membership enables to
calculate the interpolated value of each coefficient using the height defuzzification
method. The height defuzzification is very simple and quick because the crisp value is
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Figure 2.
Flow chart of RWC
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calculated as a weighted mean value of neighbouring observer coefficients (Figure 3)
by means of formula:

k*
x ¼

kxmtm þ kxntn

tm þ tn
ð17Þ

where k*
x is the interpolated value of coefficient kx; kxm and kxn are the optimal values of

coefficient kx found by RWC procedure at the operation point m and n; tm and tn are
the degrees of membership for “fired” rules m and n.

4. Simulation results
The model of the PMSM control system was carried out in MATLAB. The motor was
modelled with ordinary simplifying assumptions such as constant resistance and
inductance in stator windings, symmetry of windings and isotropic properties of motor
(1). The motor model was connected with a model of a control system, which includes a
vector control system of stator currents, a speed controller and a model of the analysed
observer (Figure 5). The model of the observer was used as an element of feedback
sending detected signals of rotor speed and position. The motor model was calculated
with a very small step of integration, which simulates its continuous character. The
step value was within the range of 0:1 4 20ms; depending on the simplification level of
the inverter model. Contrary to that, the model of the control system with the observer

Figure 3.
The optimal values of
observer corrector
coefficients vs converter
frequency

Figure 4.
Input membership
functions: Fm, Fn –
functions used for
illustration of formula (17);
tm, tn – degrees of
membership for point f *
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was calculated with much higher step values ð60 4 200msÞ; simply because it enables
a better simulation of how the control system works on a signal processor with a real
value of the sampling period.

Motor parameters
. Moment of inertia, Jm ¼ 0:000135 kg m2

. Stator inductance, L ¼ 32 mH

. Stator resistance per phase, R ¼ 7:9V

. Total moment of inertia (including Jm), J ¼ 0:000135 £ 3 kg m2

The waveforms of speed, estimated speed, angle and speed estimation error shown in
Figures 6 and 7, illustrate the operation of the observer with and without the adaptive
procedure. These waveforms were obtained as responses to the step change of speed
reference, generated in the form of a step sequence starting from zero speed and
reaching its maximum value. In the presented transients, much higher estimation
accuracy of the adaptive observer is displayed.

5. Experiments
The laboratory stand consisted of a PMSM motor supplied from a PWM inverter and
controlled by means of a microprocessor system with floating point DSP from the
SHARC family. The control system was equipped with current and voltage sensors

Figure 5.
Structure of drive model
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Figure 6.
Waveforms of speed and
estimated speed (a),
position estimation error
(b) and speed estimation
error (c) for observer with
parameter adaptation
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Figure 7.
Waveforms of speed and

estimated speed (a),
position estimation error
(b) and speed estimation

error (c) for observer
without parameter

adaptation
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(LEM) and a resolver (Figure 8). As a result of the simulation test, an observer with PI2

type of correction was selected for the laboratory experiment.
The observer algorithms as well as the control algorithms were implemented on the

DSP processor.

Figure 8.
Structure of laboratory
control system based on
DSP SHARC
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The experiments confirmed good properties of the investigated observer. Figure 9
shows the test of position estimation accuracy obtained for the observer with constant
settings, which were selected for the speed equal to 105 rad/s. The maximum
estimation error reaches a value of 2.238 for v ¼ 105 rad=s and a value of 4.6 for
v ¼ 37:7 rad=s: This means that higher accuracy is obtained in the operating point
v ¼ 105 rad=s assumed for the optimal synthesis of observer settings. Figure 10
shows the transient process involved by a step change of speed reference ð0 ! 105 !
0 rad=sÞ for sensor and sensorless control systems. Very similar waveforms of speed,

Figure 9.
Test of position estimation

accuracy with observer
setting selected for
v ¼ 105 rad/s. (a)
v ¼ 37.7 rad/s, (b)

v ¼ 105 rad/s
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estimated speed, speed estimation error and current id confirm the proper functioning
of the sensorless systems.

The only difference observed in the waveforms of current id for a sensorless system
– as a result of the position observation error (Figure 9) – is that the current id is not
equal to zero but its value reaches 0.7 A, which equals 24 per cent IR. Such a situation
occurs only for speed value equal to zero because as a result of it the EMF values also
equal to zero and, consequently, very small estimation accuracy is obtained for an
immovable motor. The waveforms presented in the figure allow us to make
comparisons between the starting process of both systems under consideration.
A special starting procedure guarantees a proper start for the sensorless system so
both speed waveforms shown are similar. Figure 11 shows the transient process

Figure 10.
Waveforms of speed (v),
estimated speed (ṽ), speed
observation error and real
current in d axis involved
by step change of
reference: 0 ! 105 !
0 rad/s. (a) Sensor control,
(b) sensorless control
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involved by a step change of speed reference ð37:7 ! 209 ! 105 rad=sÞ for sensorless
and sensor control systems. The presented waveforms prove the correct operation of
the sensorless control and allow us to compare the estimated and real currents on the
d- and q-axes. The difference between the currents on the q axis is negligible, while
the difference between the currents on the d axis is noticeable. Once again, as a result of
the errors in the position angle estimation, the real current id is not equal to zero in the
transient state but reaches the maximum value of 1 A, which is about 34 per cent IR.
The non-zero values of the current on the d axis are the cost of sensorless operation in
the presented solution. The waveforms shown in Figure 12 allow as to compare the

Figure 11.
Waveforms of speed,

reference speed and real
current in d- and q-axes

involved by step change of
reference: 37.7 ! 209 !

105 rad/s. (a) Sensorless
control, (b) sensor control
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operation of a control system with and without a sensor in a transient process involved
by speed reference shaped as a triangle. Both speed and current waveforms are similar,
which proves the correct operation of the sensorless control.

6. Conclusions
In this paper, a new structure of an observer for rotor speed and position estimation in
PMSMs was proposed. The novelty of this observer structure lies in its complex
corrector function of a proportional-double integral type and the adaptive change of
corrector settings. This structure implemented on a DSP processor operated properly

Figure 12.
Waveforms of speed,
reference speed, real and
estimated current in q axis
involved by speed
reference of triangle shape:
12.5 ! 52 ! 12.5 rad/s.
(a) Sensorless control,
(b) sensor control
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was confirmed experimentally. The proposed observer was tested on a single machine
under well defined conditions. Further investigations are required to determine the
robustness of the observer before any industrial applications can be considered.
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Urbański, K. and Zawirski, K. (2000), “Rotor speed and position detection for PMSM control
system”, Proceedings of 9th International Conference and Exhibition on Power Electronics
and Motion Control, Vol. 6, pp. 239-43.
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Andrzej Szromba
Institute of Electrical Engineering and Electronics,
Cracow University of Technology, Kraków, Poland

Keywords Circuit elements, Filtration, Current reference diodes, Power measurement,
Power transistors, Supply

Abstract Numerous types of shunt active power filters have been proposed in many papers. The
classification of these filters depends on various points of view. However, every type of a shunt
active filter, which compensates non-active component of load current, irrespective of the method
used to detect this component and control strategies of the filter, should keep supply source current
equal to active current of a load-and-filter circuit. This goal can be achieved in many ways, using
various structures of active filters. But different realizations of filters cause differences in their
properties. This paper, which is meant to serve as a review and synthesis of earlier work, shows
some possibilities of forming of single-phase shunt active filter behaviour. The following active filter
properties are discussed: operation with an immediate reaction in the supplying source branch to
a load current change, and with the reaction only once in each supplying source cycle; regulation
by the filter of the non-active current component of fundamental frequency; active filtering and
simultaneous feeding of DC load with stabilizing DC voltage; operation with stabilization of
supplying source current amplitude; reducing filter switching frequency; and reducing current
distortions in the supplying source branch. All the waveforms presented were produced using a
computer simulation method.

1. Introduction
In order to reduce variable non-active current in the supplying source branch, it is
necessary to use a controlled current source as a compensator. This type of
compensator is called a shunt active power filter. The behaviour of the compensated
load needs to be continuously monitored by the filter so that the source current could
be properly regulated. A basic structure and characterization of the main stages of the
active filter is shown in Figure 1 (see also Figure 16).

1.1 Measure-and-control stage
As Fryze’s split method of load current (Fryze, 1932) indicates, the current may be
completely characterized by its two time-dependent components:

iload ¼ ip þ iq ð1Þ

where ip and iq are active and non-active load current components, respectively.
This stage is designed to measure currents and voltages and to determine the load

current active (or non-active) component reference run. At the same time, this stage has
to control the level of energy stored in the active filter energy container. It may be
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necessary to calculate the additional current components if the performance properties
of the filter are to be improved.

1.2 Active filter’s energy container
An electrical energy-storing element is necessary to make it possible to generate a
non-active current cyclical flow between the filter and the source. This current flow
must be of suitable dynamics and magnitude. A capacitor or an inductive coil can be
employed as this energy-storing element. Capacitors are preferable because of their
greater efficiency in the transfer of energy.

1.3 Executing stage
This stage is a controlled bi-directional channel, transmitting appropriate amounts of
energy between the filter energy container and the source.

2. Control circuit structures
Any active filter compensating the non-active load current component, irrespective of
its control method, should maintain the source current at a level that is equal to that of
the active current component of the compensated load (plus the active filter’s). This
goal can be achieved using a sample active filter structure, shown in Figure 2.

The active filter (Figure 2) operates as follows: the active current component of the
entire circuit (compensated load and the filter) is continuously determined and used as
a reference run for source current. While that process continues, the source current is
being compared with the reference run. The filter is controlled in such a way as to keep
the error (referred to as 1) within a permissible range of DI. It should be noticed that the
filter forces the reference current not in its own branch, but indirectly – based on
Kirchhoff’s current law – in the source branch. The filter current, which is a sum of the
non-active component of load current and the filter active current, does not need to be
monitored by the filter’s control circuit. However, this may lead to overcurrent through
the filter elements.

This filter structure can be modified to produce some different properties of the
filter.

Figure 1.
Block diagram of a shunt

active filter (with
supplying source and

compensated load)

A shunt active
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(1) In Figure 3, the non-active current component of load (plus the filter active one)
is the reference run for the whole filter current. The filter controls the current in
its own branch, but keeps the source current equal to active current component
of the whole load-and-filter circuit. The filter current is checked in this method
and the filter elements may be protected from overload.

(2) It is possible to adjust the filter to a required range of harmonics, using a
properly tuned pass-filter. If it is needed, the active filter may compensate only
higher harmonics of load current. The fundamental frequency of the non-active
load current component may be compensated by passive circuit here. Passive
filters are considerably cheaper, but are much less efficient than active ones.
An active filter operating in parallel with a passive one may be constructed
using cheaper components of lower power rating. Both of the above-mentioned
modifications are introduced in the structure shown in Figure 3.

(3) This is not the only scenario for the operation of an active filter. An active filter
may also be designed to compensate the non-active current component of the
fundamental frequency only, leaving harmonics for tuned LC passive filters.
This concept makes it possible to avoid the main drawbacks of “passive
technology” which are the large size of passive elements and resonance
oscillations.

While in operation, each type of active filter follows the source current, compares it to
the reference run, adjusting its shape if compensated load changes. This correction

Figure 2.
Active filter structure. The
load and the active filter
active current components
constitute the reference
run. Only the source
current is monitored
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may be carried out immediately after the load is changed (Delarue and Bausiere, 1995;
Ohnuki et al., 1995), so the source current changes whenever load changes. If the load
changes continuously, the source current is always deformed, but in spite of that the
source current shape may be considerably improved.

The ideal shunt active filter should maintain the ideal sinusoidal waveform of
source current. This is difficult to achieve because of:

(1) load changes – the filter must not influence them, but should adapt to them; and
because of the filter’s internal imperfection:

(2) the operation of its switches; and

(3) changes in the filter capacitor voltage due to non-active current compensation
(see the steady-state areas in Figures 10 and 11).

There are ways to counteract the problems: case (2) requires filtration of current and/or
applying a shorter hysteresis loop width; cases (1) and (3) lead to the synchronized
manner of operation of the active filter.

The synchronized filter maintains a non-deformed sinusoidal shape of source
current in every separately observed source T period. The source voltage run is utilised
as a metronome for measuring time intervals, within which the load active power is
considered as invariable. The amplitude of source current in every T period is always

Figure 3.
Active filter compensating
only higher harmonics of

load current
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predicted at the very beginning of each source cycle, on the basis of the load power
from foregoing Tn21 period (Piróg, 1997; Szromba, 1996, 1999, 2001, 2002). The active
filter is synchronized at these moments. It can be seen that energy flowing from the
source to the load is shifted (late) for one T period. This does not have any impact on
the operation of the load, but is very useful when it comes to improving the quality of
the operation of the source: the source current’s sinusoidal amplitude cannot change
within any T period. The filter balances the flowing energy, operates as the energy
buffer and, simultaneously, as a controlled current source which compensates
non-active current component in the source branch.

The level of energy stored in the filter (mostly in the filter capacitor) may be used to
calculate the active power of compensated load, its equivalent conductance and, finally,
the load active current component amplitude (Piróg, 1997). The simplified equation,
excluding the energy stored in the input inductance of the filter (see Figure 4 with its
caption, and also Figure 16), is expressed in equation (2).

Expression (2) may be implemented as the basic scheme of any circuit, which
predicts the active current reference run (Figure 5). The explanation for the markers A
and B is given in Section 4.

ip;TðnÞ ¼ GTðn21Þus ¼
C U 2

0 2 U 2
C;Tðn21Þ

� �
2TU 2

s

us ¼ Ku U 2
0 2 U 2

C;Tðn21Þ

� �
us ð2Þ

where GT(n21) is the equivalent load conductance for Tn21 period; C is the capacitance
of the filter capacitor (the energy container); U0 is the C capacitor initial voltage
UC,T(n21) is the C capacitor voltage at the end of (n 2 1)th T period; and Us is the RMS
of the voltage source.

All remarks relating to the structures shown in Figures 1-3 are valid for the filter
arrangement shown in Figure 6. This filter’s structure is fundamental for further
considerations.

3. Forcing predefined power factor
A sinusoidal non-active current component of fundamental frequency, usually of
inductive type, is very often included in the total source current. Its complete
compensation is often dispensable, because in many cases this current inductive
component is tolerated under permission of electric utility companies. In this situation,
the power factor of the compensated load can be controlled or kept constant a little less
than the ideal power factor, which should be as near unity as possible. Such action is
beneficial, because the active filter current can be lowered, so energy losses across
semiconductor switches of the filter can be diminished (Piróg, 1997; Szromba, 1999).

Incomplete compensation of non-active current component of fundamental
frequency may be expressed using the tangent function as:

tgðwÞ ¼
I q

I p
¼ const: ð3Þ

After several transformations, the reference run for the component to be left in the
source current within Tn period of source cycle is like in equation (4):
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Figure 4.
Active filter in operation –
reason for skipping energy

stored in the input
inductance of the active

filter (top to down): energy
stored in filter inductance
(L ¼ 5 mH); energy stored

in filter capacitor
(C ¼ 4 mF, U0 ¼ 500 V);
percentage ratio of these

energies – it is almost
always less than

0.5 per cent
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iqref;TðnÞ ¼ 1L

ffiffiffi
2

p
GTðn21ÞU stgðwÞ ð4Þ

where 1L is the sinusoidal inductive current run with the unitary amplitude.
This non-active current component should be added to the active current reference

and then realized by the filter as a new reference run. The example-effect, if expression
(4) is implemented, is shown in Figures 7 and 8.

Figure 5.
Block diagram for
calculating reference run
for load active current,
based on equation (2). The
S/H 1 block operates as a
sample-and-hold device

Figure 6.
Synchronized active filter
structure
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The active filter can also be controlled to generate a non-active current component
of capacitive type with constant (as in equation (3)) or variable Iq/Ip ratio.

4. Stabilization of filter capacitor voltage
The filter capacitor must perform two functions simultaneously, during active filter
operation.

(1) It functions as an energy store. The energy stored in it enables us to force
current in the source-filter branch of expected shape and thus the non-active
source current can be neutralized.

(2) It operates as a “sensor” of load equivalent conductance (see expression (2)).

Changes of capacitor DC voltage are necessary to obtain active current amplitude, but
from the other hand, the changes are unfavourable due to the following.

. Value of the load active power is limited, because voltage across the capacitor
must be considerably higher than the amplitude of the source voltage at any
moment of filter operation.

Figure 7.
Two current reference

waveforms: load active
component (1) and the

inductive component (2) to
be left in source current at

tg(w) ¼ 0.3

Figure 8.
Load active current

component (1) and source
current (2) with the

inductive component
(the waveform 2 is realized
by the filter as the sum of

waveforms shown in
Figure 7), tg(w) ¼ 0.3
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. Dynamic properties of the filter are worse because the speed of changes of active
filter current, which determines the ability to follow rapid load changes, depends
on the filter capacitor voltage and the source voltage difference.

. If the active filter operates simultaneously as a rectifier (Figure 16), its rectifying
properties deteriorate.

An additional sub-circuit may be provided to the filter to reduce these inconveniences
(Figure 9) (Piróg, 1997; Szromba, 1996). The operation principle of the sub-circuit is
based on memorizing successive filter capacitor voltage changes. The sub-circuit is
built using sample-and-hold (S/H) devices and adders. The position of the sub-circuit in
the control algorithm-scheme of the filter is defined by points A and B (Figure 5).

If the stabilizing sub-circuit is applied, the capacitor of the active filter does not have
to perform the task of indicating the existing active load power and its charge can be
supplemented from the source. This happens due to the fact that active filter’s control
circuit allows for the doubling of the source current in the next T period after the load
change (see the current waveform in Figure 10).

The voltage condition uc @ us (the capacitor voltage considerably higher than the
peak source voltage) should not be referred to the total active power of the load, but to
the maximal change of the power during a single T period of the source cycle.

The effect of operation of the memorizing circuit on the capacitor voltage is shown
in Figure 10 (on comparing, the load current is the same as shown in Figure 11).

Figure 9.
Sub-circuit for stabilizing
voltage across the
capacitor of the active
filter

Figure 10.
Source current (upper)
and filter capacitor voltage
(the stabilizing circuit is
used). Start and
steady-state operation of
the source-filter
-compensated load circuit,
with load current being
the same as in Figure 11
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It should be mentioned that – if the stabilizing sub-circuit is in operation – in the next
T period after switching the load out of operation, the active filter gives back “the
additional” amount of energy (drawn to supplement the capacitor’s charge) to the
source.

5. Stabilization of source current amplitude
The synchronized active filter presented, maintaining sinusoidal source current in
each, separately considered T period, is not concerned with changes in the source
current amplitude between the adjacent periods. This is perhaps not optimal. In the
case of frequent power changes of compensated load, source current amplitude can be
different in every T period. If the filter is regulated in such a manner that the source
current amplitude is near its average value in a range of several T periods, the quality
of the source operation will be higher. Such a goal can be achieved, in the case of the
filter presented, by regulating the filter control coefficient, called: Ku ¼ C=2TU 2

s (see
equation (2)).

The value of the Ku coefficient is determined with the assumption of energy
balancing in every T period in the circuit: source – compensated load – active filter. Let
us assume that this coefficient’s value is called nominal. However, if the value of the
coefficient is applied lower than the nominal level (keeping C, T and Us constant), the
energy (controlled by the filter) flowing from the source is not balanced exactly in the T
period within the load changes. The action of reaching the steady-state will be spread on
several subsequent T periods. If within this time period the load power changes in the
opposite direction (e.g. first rises and then falls or vice versa) then the load equivalent
conductance G will be averaged in some way. The filter capacitor is the energy buffer
(between the source and load) in this situation. Consequently, the RMS of source current
is lower (there is no change in the active power of compensated load, which is obvious).

There are two waveforms in Figure 12. The first one is the current of an example
load to be compensated. The second waveform is the source current while the
Ku coefficient is nominal.

The waveforms in Figure 13 show the source current for the coefficient Ku set at
25 per cent of its nominal value, and for two-state Ku regulation (Szromba, 2002).

The manner of the reduction of source current RMS, illustrated by the first
waveform (Figure 13), is associated with the longer time of reaching the steady-state,

Figure 11.
Current of compensated

load and the filter
capacitor voltage. Start

and the steady-state
operation of the

source-filter-load circuit

A shunt active
power filter

1155



Figure 12.
Compensated load current
and the source current
before the Ku coefficient
regulation
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Figure 13.
Source current after the Ku

coefficient regulation
(in two ways)
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when the filter (or compensated load) starts or ends its operation. However, if the Ku

has its nominal value only during the first and last T period when the filter is loaded,
and is diminished between these periods, this inconvenience of filter behaviour may be
reduced. The two-state Ku regulation method offers such an opportunity. The filter
operates by averaging the source current changes, due to averaging changes of the
load equivalent conductance. After the last T period, within which the load draws
energy from source, the Ku coefficient returns to its nominal value. This produces the
same effect as an increase of equivalent conductance, and the filter forces more energy
from source to bring the capacitor voltage to its initial level U0 (see equation (2) and the
second waveform in Figure 13).

Current non-active components, flowing through the source, are significantly
reduced within some range around the fundamental frequency. For the example
discussed (Figures 12 and 14), the RMS of compensated load current is equal to 23.1 A
(its “pure” active component is equal to 16.8 A). The RMS of source current is reduced
from 19.2 A (the second waveform in Figure 12) to 17 A (the first waveform in Figures 13,
see also Figures 14 and 15) and to 17.5 A (for the second waveform in Figure 13).

The amplitude of the source current is smaller in Figure 15 than in Figure 14, due to
the longer time of operation of the source if Ku coefficient is set below its nominal value
(see the first waveform in Figure 13). The load current (or work) is naturally the same
before and after reduction of the Ku coefficient.

6. Reduction of filter switching frequency
The base diagram of the power circuit of the filter being analysed is shown in Figure 16.

The formulas in equation (5) are a formal mathematical model valid for the currents
and voltages shown in Figure 16. The s coefficient is equal to +1 when the NA-PB pair
of switches is in state ON, and 21 when the NB-PA pair is in state ON.

Figure 14.
Frequency characteristic
of source current, the
filter is present and Ku

coefficient has its nominal
value
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dis

dt
¼

us þ suc

L
þ

diLs

dt

duc

dt
¼

s ðiLs 2 isÞ2 iLd

C
ð5Þ

If the active filter operates properly, the source current vector Is and the source voltage
vector Us have the same direction. If the AC load is switched off, and the DC load is
switched on, source current is equal to filter current: is¼ iF. The active filter functions as a
rectifier drawing sinusoidal and in-phase (with voltage) source current. If AC load operates
ðiLs – 0Þ; the filter current is not the same as source one (iF – is), and the direction of the
source current can be different from the direction of the filter current. In this case, the active
filter performs the filtering and, simultaneously, the rectifying function.

The control circuit of the filter contains a hysteresis regulator which controls filter
switches PA, PB, NA, NB (Figure 6). The switches are controlled in such a way as to
shape the source current is to be sinusoidal and in-phase with the source voltage us, and

Figure 15.
Frequency characteristic

of source current, when Ku

coefficient is set at 25 per
cent of its nominal value

Figure 16.
Base diagram of power

circuit of the active filter
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the amplitude of the current has to be defined in proportion to the sum of the AC and
the DC load active power.

The analysis of the operation of the switches indicates (Szromba, 2001) that it is
possible to diminish the switching frequency. It can be done by replacing the sum of
the voltages ðus þ ucÞ by the source voltage us. To execute this plan, the pair NA-NB
(or the pair PA-PB that produces the same effect) should be turned ON in a required
period of time. Formally, this may be done by introducing a new state for the filter
switches, namely s ¼ 0 (formula (5)).

Results obtained in this way are shown in Figure 17. In the most critical area before,
when the source voltage is nearly zero (around the middle vertical line in Figure 17), the
filter switches are almost not commuted. So, energy consumed by the active filter’s
semiconductor switches is lowered.

7. Reduction of current distortions in source branch
The amplitude of high frequency current component, appearing in the source current
during the operation of an active filter, can be reduced. This may be effected using two
principal methods: filtration of current and/or reducing the active filter regulator’s
hysteresis loop width. The circuit shown in Figure 18 outlines the idea of the filtration
method. It consists of the capacitor CF, the in parallel resistor RR and the damping in
series resistor RF. The passive filter, connected in parallel to the active filter, reduces
the “from active filter” high frequency current component in the source branch. It may
be based on a capacitor instead of the tuned LC circuit because of the frequency range

Figure 17.
Source current waveform
before and after
introducing additional
s ¼ 0 state for active filter
switches. The load current
shape is shown in
Figure 11

Figure 18.
Schematic of shunt
passive filter and its
location. Source current
waveform: (a) before
passive filtration, and
(b) with the passive filter.
The three-state control
method is used
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rather than the single frequency of the operation of switches in an active filter (see the
first of equation (5)).

The result of the filtration is shown by the second diagram in Figure 18. The “thick”
waveform shows the source current without, and the “thin” waveform with, the passive
filter as the suppressor. The amplitude of high frequency component has been reduced,
but the current run contains the capacitive component (the source current is shifted
towards the capacitive type of current).

But the active filter is able to operate with the predefined power factor (see Section 3),
and can compensate the passive filter current. This active and passive filter
cooperation is shown by the first waveform in Figure 19.

Equation (5) implies that the lower input inductance of the filter is used (or the
higher voltage is applied across the active filter capacitor), the more dynamically can
the active filter shape the current in its own and in the source branch. Unfortunately, it
increases the commutation frequency of the filter switches, and more power is
consumed by the filter. However, using the three-state control method (Section 6) one
can lower the active filter input inductance (see Figure 16 and equation (5)) without
increasing the switching frequency. It gives an opportunity to reduce the amplitude of
the kick impulses at the moment when the load rapidly changes. The effect achieved by
this way is shown in Figure 19: as the difference of current transients between both the
waveforms. This effect may be considerably improved if the compensated load can be
connected to the source through a reactor. The active filter has a little more time
available to reduce the current transient in this case.

8. Conclusion
A shunt (parallel) active filter is not a “panacea” which can completely eliminate
non-active current from an AC supply system, but it often effectively and flexibly
improve the power factor and contribute to an improved frequency characteristic of
source current. While operating jointly with the source, the filter is able to generate
non-active current of almost any shape through the source branch. The possibility of
forcing such type of reactive currents may be used to compensate non-linear and
varying loads. It can help to obtain the required quality of source operation.

The method of the addition of filter current to the source-load circuit is very
important. The synchronized filter can maintain non-deformed source current within

Figure 19.
Source current waveform

if: the passive filter is
present, the capacitive
current component is

compensated, the
three-state control is used;
and (the second waveform)

the lower inductance of
the active filter is applied

(from 5 to 2 mH)
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each source cycle. It eliminates the impact that continuous load changes and varying
voltage across the filter capacitor (resulting from the compensation of non-active
current) have on the concurrent sinusoidal shape of the source current.

There are many methods for diminishing distortions of source current that are
produced during the operation of an active filter. One can add an additional passive
filter and/or improve the active filter parameters, for example, dynamic properties and
frequency characteristic of the active filter current.

The functional elements, shown in Figures 5 and 9 for example, are used only as an
explanation of how some ideas (of improving the filter properties) may be materialized
in the circuit. They may be successfully realized as well as software procedures, using
the microprocessor technique.
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